Answer:
C
Explanation:
Temperature is directly related to kinetic energy (KE). As we raise temperature, we are raising KE, as well. Particles with more KE move more quickly and with more force.
This means that these particles are more likely to collide with each other and react to allow the chemical reaction to follow through. In turn, if the chemical reaction is more likely to go to completion, the reaction rate increases, eliminating A and B.
The concentration of the solute is not affected by the temperature; in other words, temperature will not increase or decrease the amount of solute in the solution, so eliminate D.
Thus the answer is C.
Hope this helps!
The fuel released 90 calories of heat.
Let suppose that water experiments an entirely <em>sensible</em> heating. Hence, the heat released by the fuel is equal to the heat <em>absorbed</em> by the water because of principle of energy conservation. The heat <em>released</em> by the fuel is expressed by the following formula:
(1)
Where:
- Mass of the sample, in grams.
- Specific heat of water, in calories per gram-degree Celsius.
- Temperature change, in degrees Celsius.
If we know that
,
and
, then the heat released by the fuel is:

The fuel released 90 calories of heat.
We kindly invite to check this question on sensible heat: brainly.com/question/11325154
At STP, or standard temperature and pressure, 1 mol of any gas will take up 22.4 liters of space. Assuming STP, 4.5 moles of H2 will take up 100.8L.
N₂ + 3H₂ ⇒ 2NH₃
1mol : 2mol
3,72mol : 7,44mol
n = 7,44mol
M = 17g/mol
m = n * M = 7,44mol * 17g/mol = 126,48g
Using Gay-Lussac's Law, pressure is proportional to (absolute) temperature in Kelvin. We first convert the temperature values to Kelvin: 110 C = 383.15 K, while 65 C = 338.15 K.
P1/T1 = P2/T2
22.5/383.15 = P2/338.15
P2 = 19.9 psi