<span>The problem has to do with oxidation states of the matter. The oxidation state of oxygen will always be -2 with the exception of peroxides which will have a state of -1. The overall balanced state of chemical compounds will be 0, so the oxidation state of Mn in MnO2 will be +4. The oxidation state of MnO4- will then be +7 to balance out to the negative one charge. The state change from +4 to +7 is 3, thus three electrons have to be lost in order for this to happen; a loss of a charge of -3 results in an increase of charge of 3. Oxidation is always the process of 'losing' electrons.
</span><span>E] MnO2(s) MnO4-(aq</span>
Earth takes in thermal energy from the Sun in a process called thermal radiation.
Sunlight strikes Earth's surface at different angles. This angle is called the angle of insolation.
<h3>What is thermal energy?</h3>
Thermal energy refers to the energy contained within a system that is responsible for its temperature.
Earth takes in thermal energy from the Sun in a process called thermal radiation.
Sunlight strikes Earth's surface at different angles. This angle is called the angle of insolation.
Learn more about thermal energy here:
brainly.com/question/11278589
#SPJ1
Answer:
Sucrose: glucose and fructose
Explanation:
<em>What monosaccharides will result from the hydrolysis of sucrose?</em>
<em>Sucrose</em> is a <em>disaccharide</em> composed of 2 different <em>monosaccharides</em>: glucose and fructose joining by a 1 ⇒ 2 bond. These monosaccharides will be released upon the hydrolysis of sucrose.
<em>What monosaccharide will result from the hydrolysis of starch?</em>
<em>Starch</em> is a <em>polysaccharide</em> composed of numerous glucose monomers joined by glycosidic bonds (1 ⇒ 4 and 1 ⇒ 6). These monosaccharides will be released upon the hydrolysis of starch.
Explanation:
It is the heat required to change a gram of substance from a liquid to a gas.
Answer:
The molarity of the solution is 7.4 mol/L
Explanation:
From the question above
0.400 ml of water contains 1.00 g of hydrochloride form of cocaine
Therefore 1000 ml of water will contain x g of hydrochloride form of cocaine
x = 1000 / 0.400
x = 2500 g
2500g of hydrochloride form of cocaine is present in 1000 ml of water.
Mole of hydrochloride form of cocaine = mass /molar mass of hydrochloride
Mole of hydrochloride form of cocaine = 2500/339.8
= 7.4 mol
Molarity = mol/ volume in liter (L)
molarity = 7.4 /1
Molarity = 7.4 mol/L