1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
7

What happened on the moon during the period of Late Heavy Bombardment? a. Volcanism c. The core cooled b. Capture d. The moon co

ndensed into its present form
Physics
2 answers:
Lerok [7]3 years ago
5 0

Answer:

d. The moon condensed into its present form

Explanation:

Late Heavy bombardment of moon occurred about 4 billion years ago. From the Lunar samples brought by Apollo mission astronauts, it was deduced that in a very short span of time, there was a spike in impactors (the comets and asteroids). It is considered by the scientists that many asteroids collided with the inner solar system planets. The present form planets and moon is the result of this period of late Heavy bombardment.

sveta [45]3 years ago
4 0
A.) Volcanism is your answer
You might be interested in
A vinyl record is played by rotating the record so that an approximately circular groove in the vinyl slides under a stylus. Bum
AleksandrR [38]

Answer:

Hits per second=199 hit/s

Explanation:

#Given the angular velocity, \omega=33\frac{1}{3} rev/min , radius of the record r=0.1m and the distance between any two successive bumps on the groove as d=1.75mm.

The linear speed of the record in meters per second is:

v=\omega r=33\frac{1}{3}\times\frac{2\pi}{60}\times 10\times 10^{_2}\\\\=0.3843m/s\\

#From v above, if the bumps are uniformly separated by 1m, then the rate at which they hit the stylus is:

Hits/second=v/d    \ \ \ \ d=1.75mm\\\\=0.3483/0.000175\\\\=199.0385714\approx 199

Hence the bumps hit the stylus at around 199hit/s

8 0
3 years ago
HELP PLS MARKING BRANLIST 100 Pts TAKING TEST RN
vredina [299]

Answer:

0.5 m/s2

Explanation:

accelration formula : final velocty - starting velocity divided by time

5 0
2 years ago
A student drops a rock from a bridge to the water 12.7 m below. with what speed does the rock strike the water? the acceleration
kolezko [41]

The rock strike the water with the speed of 15.78 m/sec.

The speed by which rock hit the water is calculated by the formula

v=\sqrt{2gh}

v=\sqrt{2*9.8*12.7}

v=15.78 m/sec

Hence, the rock strike the water with the speed of 15.78 m/sec.

7 0
3 years ago
A parallel-plate capacitor with plates of area 360 cm2 is charged to a potential difference V and is then disconnected from the
Softa [21]

Answer:

Q=3.9825\times 10^{-9} C

Explanation:

We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.

1 m =100 cm

Surface area =S=\frac{360}{10000}=0.036 m^2

\Delta d=0.8 cm=0.008 m

\Delta V=100 V

We have to find the charge Q on the positive plates of the capacitor.

V=Initial voltage between plates

d=Initial distance between plates

Initial Capacitance of capacitor

C=\frac{\epsilon_0 S}{d}

Capacitance of capacitor after moving plates

C_1=\frac{\epsilon_0 S}{(d+\Delta d)}

V=\frac{Q}{C}

Potential difference between plates after moving

V=\frac{Q}{C_1}

V+\Delta V=\frac{Q}{C_1}

\frac{Qd}{\epsilon_0S}+100=\frac{Q(d+\Delta d)}{\epsilon_0S}

\frac{Q(d+\Delta d)}{\epsilon_0 S}-\frac{Qd}{\epsilon_0S}=100

\frac{Q\Delta d}{\epsilon_0 S}=100

\epsilon_0=8.85\times 10^{-12}

Q=\frac{100\times 8.85\times 10^{-12}\times 0.036}{0.008}

Q=3.9825\times 10^{-9} C

Hence, the charge on positive plate of capacitor=Q=3.9825\times 10^{-9} C

6 0
3 years ago
A helicopter flies with an air speed of 175 km/h, heading south. The wind is blowing at 85 km/h to the east relative to the grou
spayn [35]

Answer:

154° at 195 km/h

Explanation:

The helicopter is moving south at 175 km/h, relative to the wind.

But the wind is moving east at 85 km/h, relative to the ground.

This means that the helicopter is moving south east relative to the ground.

Every hour, the helicopter will move 175 km to the south and 85 km to the east, relative to the ground.

This means that we can determine the speed and direction of the helicopter using a right triangle and simple trigonometry.

Refer to the triangle b1.

The distance traveled by the helicopter in 1 hour is denoted by d.

d is the hypotenuse of the right triangle.

Using the Pythagorean Theorem, we can calculate d to be 195 km (rounded to 3 s. f.)

Hence the helicopter is traveling at 195 km/h relative to the ground.

To calculate the direction we use,

tan (x) = opposite/adjacent = 85/175

So the angle x is,

x = arctan (\frac{85}{175} ) = 25.9°

Relative to the North, the helicopter is moving at 180° - 25.9° = 154° (rounded to 3 s. f.)

8 0
2 years ago
Other questions:
  • A student makes the following statement
    13·1 answer
  • 4. I wonder if the amount of homework I complete has an effect on my science test scores. a. Question: b. Hypothesis + Predictio
    7·1 answer
  • You are driving due north on i-81 to come to jmu with a speed of 10 m/s, suddenly you realize you forgot your book. You make a u
    12·1 answer
  • 1. List the 3 major skeletal cartilages.
    13·2 answers
  • A 66-kg fellow stands on a digital scale in an elevator that accelerates upwards from rest to 4.5 m/s in 2.00 s. show answer Inc
    10·1 answer
  • If an oscillating mass has a frequency of 1.25 Hz, it makes 100 oscillations in
    5·1 answer
  • A rock is thrown downward from an unknown height above the ground with an initial speed of 10m/s. It strikes the ground 3s later
    12·1 answer
  • Suppose you want to make an interferometer with two slits to show the wave nature of light to your friends. The most convenient
    15·1 answer
  • A charge of +3.5 nC and a charge of +5.0 nC are separated by 40 cm. Find the equilibrium position for a -6.0 nC charge.
    10·2 answers
  • A box moves 5m horizontally when force F=10N is applied at an angle 0=30°.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!