Recall that
<em>v</em>² - <em>u</em>² = 2 <em>a</em> ∆<em>x</em>
where <em>u</em> and <em>v</em> are initial and final velocities, respectively; <em>a</em> is acceleration; and ∆<em>x</em> is the distance traveled (because the skater moves in only one direction).
So we have
(5.8 m/s)² - (8.8 m/s)² = 2 <em>a</em> (6.0 m)
<em>a</em> = ((5.8 m/s)² - (8.8 m/s)²) / (12 m)
<em>a</em> = -3.65 m/s²
Answer:
Given: Vi = 382 km/h, Vf = 0 km/h, Mc = 705 kg, Md = 65 kg, Δt = 12
Required: Δx
F = Δp / Δt
= ![\frac{(Mc+Md)Vf-(Mc+Md)Vi}{t} \\\\= 6.81 * 10x^{3} N [left]\\\\x=\frac{1}{2} (Vi+Vf)\\ \\ = 637m[right]](https://tex.z-dn.net/?f=%5Cfrac%7B%28Mc%2BMd%29Vf-%28Mc%2BMd%29Vi%7D%7Bt%7D%20%5C%5C%5C%5C%3D%206.81%20%2A%2010x%5E%7B3%7D%20N%20%5Bleft%5D%5C%5C%5C%5Cx%3D%5Cfrac%7B1%7D%7B2%7D%20%28Vi%2BVf%29%5C%5C%20%5C%5C%20%3D%20637m%5Bright%5D)
Answer:
1.5 m/s
Explanation:
Conservation of momentum means the momentum of the system before the collision is the same as after.
The before, after momentum of each ball is ...
5 kg ball: (5 kg)(2 m/s), (5 kg)(-1 m/s)
10 kg ball: (10 kg)(0 m/s), (10 kg)(v)
The sum of the "before" products is the same as the sum of the "after" products:
(5 kg)(2 m/s) +0 = (5 kg)(-1 m/s) +(10 kg)v
(10 +5) kg·m/s = (10 kg)·v . . . . . add (5 kg)(1 m/s) to both sides
v = (15 kg·m/s)/(10 kg) = 1.5 m/s
The speed of the larger ball will be 1.5 m/s. Its direction of motion will be the opposite of that of the 5 kg ball after the collision.
Greenhouse gases can cause Earth's atmosphere to trap more and more heat. This causes Earth to warm up. Using fossil fuels results in a rise of greenhouse gases.
Answer
given,
Hunk Finn speed,v_y= 0.7 m/s
Speed of river,v_x = 1.50 m/s
Assuming the speed of the river is in x-direction.
Speed of Hunk Finn to be in y-direction.
Hunk velocity relative to river =



Speed of Hunk relative to river = 1.66 m/s
direction of the boat



Hence, angle of the raft is 24.01°