The work done by
along the given path <em>C</em> from <em>A</em> to <em>B</em> is given by the line integral,

I assume the path itself is a line segment, which can be parameterized by

with 0 ≤ <em>t</em> ≤ 1. Then the work performed by <em>F</em> along <em>C</em> is
![\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cleft%286x%28t%29%5E3%5C%2C%5Cvec%5Cimath-4y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%29%5Ccdot%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Bx%28t%29%5C%2C%5Cvec%5Cimath%20%2B%20y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%5D%5C%2C%5Cmathrm%20dt%20%5C%5C%5C%5C%20%3D%20%5Cint_0%5E1%20%28288%283t-1%29%5E3-8%282t%2B5%29%29%20%5C%2C%5Cmathrm%20dt%20%3D%20%5Cboxed%7B312%7D)
Answer: the lvl wud remain the same
Explanation: as per Archimedes Principle, the weight of the water displaced by the object is equal to the weight of the object. When the ship initially went into the pool, it wud hv displaced some water. When the anchor is dropped, the level does not change coz the anchor was already in the ship and no extra weight has been added, so the weight of the anchor has already been accounted for in the first place when the ship was first placed in the pool
Answer:
a battery, wires, and a switch.
Explanation:
All circuits include?
Answer:
Pluto
Explanation:
In our solar system, we have several planet. Pluto is one of the. Pluto is a planet that is highly oval shaped orbit and eccentric that brings it inside the another orbit. It get inside the orbit of Neptune. Sometimes even Neptune get far away from sun in comparison to the dwarf planet Pluto.
It is very strange happening in the world of planet. it occurs in the year of 1979 and 1999. But Pluto never ever crashed into Neptune. It happen because Neptune takes every three lapse that takes around the sun but Pluto makes only two lapse. This happening prevents two bodies from clashes.