1). c ... 2). d ... 3). a ... 4). d ... 5). c ... 6). a
7). b-mass ... c-m/s ... d-Newton's 1st ... e-Newton's 2nd
Answer:
When focused light is projected onto the retina, it stimulates the rods and cones. The retina then sends nerve signals are sent through the back of the eye to the optic nerve. The optic nerve carries these signals to the brain, which interprets them as visual images.
Explanation:
Hope it will help u
Mechanical Energy transforms into Thermal due to the moving parts rubbing on eachother creating heat and friction.
Answer:
Explanation:
The speed of sound in air to be 343 m/s.
Given:
distance 'd' = 5 m
L = 12 m
It can be concluded that path difference must be equal to half of the wavelength when person is observing destructive interference'y' at 1 m distance from the equidistant position
Since
λ/2 = yd/L
λ/2 = (1 x 5)/12
λ = 0.833m
Frequency of the sound is given by,
f = v / λ => 343 / 0.833
f=411.6 Hz
Answer:
Therefore,
The frequency heard by the engineer on train 1

Explanation:
Given:
Two trains on separate tracks move toward each other
For Train 1 Velocity of the observer,

For Train 2 Velocity of the Source,

Frequency of Source,

To Find:
Frequency of Observer,
(frequency heard by the engineer on train 1)
Solution:
Here we can use the Doppler effect equation to calculate both the velocity of the source
and observer
, the original frequency of the sound waves
and the observed frequency of the sound waves
,
The Equation is

Where,
v = velocity of sound in air = 343 m/s
Substituting the values we get

Therefore,
The frequency heard by the engineer on train 1
