Remain the same, if it continues to absorb heat while it's hit it's melting point. It isn't necessarily going to change. Now if its a liquid it would turn into a gas, which would be an increase in melting but then it would no longer be able to melt, once a gas.
put some water out with less salt and then some more water out with more salt and look at the differences with the freezing.
Answer:
- <em>The net ionic equation is: </em><u>Ag⁺ (aq) + Cl ⁻ (aq) → AgCl (s)</u>
Explanation:
<u>1) Start by writing the total ionic equation:</u>
The total ionic equation shows each aqueous substance in its ionized form, while the solid or liquid substances are shown with their chemical formula.
These are the ionic species:
- AgF (aq) → Ag⁺ (aq) + F⁻ (aq)
- NH₄Cl (aq) → NH₄⁺ (aq) + Cl ⁻ (aq)
- NH₄F(aq) → NH₄⁺ (aq) + F⁻ (aq)
Then, replace each chemical formula in the chemical equation by those ionic forms:
- Ag⁺ (aq) + F⁻ (aq) + NH₄⁺ (aq) + Cl ⁻ (aq) → AgCl (s) + NH₄⁺ (aq) + F⁻ (aq)
That is the total ionic equation.
<u>2) Spectator ions:</u>
The ions that appear in both the reactant side and the product side are considered spectator ions (they do not change), and so they are canceled.
In our total ionic equation they are F⁻ (aq) and NH₄⁺ (aq).
After canceling them, you get the net ionic equation:
<u>3) Net ionic equation:</u>
- Ag⁺ (aq) + Cl ⁻ (aq) → AgCl (s) ← answer
To Earth, since it has the same radio and masses. This is what I believe.