Answer:
Base Mg(OH)2 does neutralise the acid and is 12g in excess.
Explanation:
2HCL +Mg(OH)2 -> MgCl2 + 2H20
2 * 36.458 g of HCL react with 58.319 g of Mg(OH)2 to neutralise it.
72.916 HCl reacts with 58.319 g of the base.
So 20 g HCl reacts with (58.319/72.916) * 20 = 16g.
There are 28 g of Mg(OH)2 so the base does neutralise all the acid.
The Mg(OH)2 is 28 - 16 = 12 g in excess.
Answer:
a) 2.01 g
Explanation:
- Na₂CO₃ (s) + 2AgNO₃ (aq) → Ag₂CO₃ (s) + 2NaNO₃
First we <u>convert 0.0302 mol AgNO₃ to Na₂CO₃ moles</u>, in order to <em>calculate how many Na₂CO₃ moles reacted</em>:
- 0.0302 mol AgNO₃ *
= 0.0151 mol Na₂CO₃
So the remaining Na₂CO₃ moles are:
- 0.0340 - 0.0151 = 0.0189 moles Na₂CO₃
Finally we <u>convert Na₂CO₃ moles into grams</u>, using its <em>molar mass</em>:
- 0.0189 moles Na₂CO₃ * 106 g/mol = 2.003 g Na₂CO₃
The closest answer is option a).
Answer:
A) increasing tension in the vibrating object.
Formula for hydroselenic acid: H2Se