Answer:
a)CH₄, BH₃, and CCl₄
Explanation:
<u>London dispersion forces:-
</u>
The bond for example, in the molecule is F-F, which is non-polar in nature because the two fluorine atoms have same electronegativity values.
The intermolecular force acting in the molecule are induced dipole-dipole forces or London Dispersion forces / van der Waals forces which are the weakest intermolecular force.
Out of the given options, H₂O , NH₃ exhibits hydrogen bonding which is:-
<u>Hydrogen bonding:-
</u>
Hydrogen bonding is a special type of the dipole-dipole interaction and it occurs between hydrogen atom that is bonded to highly electronegative atom which is either fluorine, oxygen or nitrogen atom.
Thus option B and C rules out.
<u>Hence, the correct option which represents the molecules which would exhibit only London forces is:- a)CH₄, BH₃, and CCl₄</u>
Once you balance the enquation you "switch partners" of the element (negative charge to positive charge)
Answer:
I think B would be alcohol but A I'm not to sure
I believe the statement above is true. <span>A </span>carbohydrate<span> is a </span>biological molecule<span> consisting of </span>carbon<span> (C), </span>hydrogen<span> (H) and </span>oxygen<span> (O) atoms, usually with a hydrogen–oxygen </span>atom ratio of 2:1. <span>When a </span>carbohydrate<span> is broken into its component sugar molecules by </span>hydrolysis<span> (e.g. sucrose being broken down into glucose and fructose), this is termed saccharification.</span>
49.5g
Explanation:
Mass of salt = 15g
Volume of solution = 1L
Volume of given solution = 3.3L
Unknown:
Mass of salt in the solution = ?
Solution:
Since we have been given the concentration of the salt in the solution, we can use it to solve the problem.
Concentration; 15g/L
Given;
In 1L of the solution we have 15g of salt,
In 3.3L of the solution we will have 3.3 x 15 = 49.5g
The salt is the solute and it represents the dissolved substances.
learn more:
Concentration brainly.com/question/4641902
#learnwithBrainly