<h2>
Answer:</h2>
390 g KNO₃
<h2>
General Formulas and Concepts:</h2><h3><u>Chemistry</u></h3>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3><u>Math</u></h3>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h2>
Explanation:</h2>
<u>Step 1: Define</u>
2.3 × 10²⁴ formula units KNO₃
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g.mol
Molar Mass of KNO₃ - 39.10 + 14.01 + 3(16.00) = 101.11 g/mol
<u>Step 3: Convert</u>
<u />
= 386.172 g KNO₃
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules and round.</em>
386.172 g KNO₃ ≈ 390 g KNO₃
Definitely definite mass because liquids can take on any shape and can have different volumes.
<span>The calculation of quantities in chemical equations are called Stoichiometry. Stoichiometry is a branch of chemistry which deals with relative quantities of reactants and products in chemical reactions. The correct answer is 'Stoichoimetry'. I hope this helps you. </span>
It would be 35.8 Calories or calories. Not sure about that part. Hope this helps though.
Answer : If we list the given chemicals according to their increasing oxidising ability then the order will be like this; 1 being the strongest and 6 being the weakest
1. K > 2. Ca >3. Ni> 4. Cu> 5. Ag> 6.Au
Explanation : Considering the reduction potential of each chemical species it will be easy to identify their oxidising capacity and differentiate accordingly;
More negative the value of reduction potential more is the ability of the chemical species to get oxidised.
Chemicals with their reduction potential is given below.
K has -2.92; Ca has -2.76; Ni has -0.23; Cu has 0.52; Ag has 1.50 and Au has 1.50.