Answer:
Explanation:
Given
Initial speed 
distance traveled before coming to rest 
using equation of motion

where v=final velocity
u=initial velocity
a=acceleration
s=displacement

for 
using same relation we get

divide 1 and 2 we get


So a distance if 213.32 ft is required to stop the vehicle with 80 mph speed
The prefix "mega" means million.
Therefore
1 megameter = 10⁶ meters
That is,
1.0 megameter = 1,000,000.0 meters.
Answer:
The decimal is moved right by 6 places to convert a megameter to meters.
Answer:
Explanation:
According to Boyle's law for constant temperature of gas Pressure is inversely proportional to the volume of gas.



if Pressure is tripled then


Volume becomes one-third of original volume
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
The effect of a change in the price of a new pair of headphones on the equilibrium price of replacement tips ( dp/dpN) is

b
The value of Q and p at equilibruim is
and
5
The consumer surplus is 
The producer surplus is 
Explanation:
From the question we are told that
The inverse market demand is 
The inverse supply function is 
a
The effect of change in the price is mathematically given as

Now differntiating the inverse market demand function with respect to 
We get that

b
We are told that
$30
Therefore the inverse market demand becomes

At equilibrium

So we have

Where
is the quantity at equilibrium



Substituting the value of Q into the equation for the inverse market demand function

5
Looking at the equation for
we see that
For Q = 0


And for Q = 250


Hence the consumer surplus is mathematically evaluated as

Substituting value


And
The producer surplus is mathematically evaluated as


Answer:
8.4 kW
Explanation:
Using the Stefan-Boltzmann law,
P = εAσT4
Where:
P: Radiation Energy
ε: Emissivity of the Surface. Check emissivity table below of common materials.
A: Surface Area, in m^2.
σ: Stefan-Boltzmann Constant, σ=5.67 × 10-8 W/m2•K4
T: Temperature
Plugging in values,
P = 0.85 x 3.328 x 5.67 x 10^(-8) x 205
P = 8383 W or 8.4 kW