Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Answer:
pitched sound
Explanation:
The shrillness of sound is known as Pitched Sound
Please mark me as brilliant
plz plz plz
Answer:
they don't strech so they tear a muscle when they perform
Explanation:
Short distance to turn the circumference of the wheels. Mechanical advantage is load/effort I think
Answer:
10m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 100m/s
Time taken = 10s
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time.
A =
v = final velocity
u = initial velocity
t = time taken
So, insert the parameters and solve;
A =
= 10m/s²