Answer:
removing the methanol as it is formed
Explanation:
One of the ways to drive the equilibrium position towards the right is to remove one of the products formed.
According to Me Chatelier's principle, the imposition of a constraint on a system in a equilibrium causes the equilibrium position to shift towards a new position that annuls the constraint. Hence, removing the methanol causes the equilibrium position to shift to the far right in order to reestablish equilibrium according to Le Chatelier's principle.
The unit pg stands for pictogram. It is one-trillionth of a gram. Because of the very small mass, it is expressed in the prefix form of the base units for convenience. Now, the mass of cofactor a is 41.5 pg per cell. Since there are a total of 105 cells, the total mass would be:
Total mass = 105 cells * 41.5 pg/cell = 4,357.5 pg
Answer:
0.32M
Explanation:
<u>Step 1:</u> Balance the reaction
K2CO3 + Ba(NO3)2 ⇔ KNO3 + BaCO3
We have a 20 mL 0.2 M K2CO3 and a 30mL 0.4M Ba(NO3)2 solution
SinceK2CO3 is the limiting reactant, there will remain Ba(NO3)2 after it's consumed and produced KNO3 + BaCO3
<u>Step 2: </u>Calculate concentration
To find the concentration of the barium cation we use the following equation:
Concentration = moles of the <u>solute</u> / volumen of the <u>solution</u>
<u />
<u>[Ba2+] </u> = (20 * 10^-3 * 0.2M + 30 * 10^-3 * 0.4M) / ( 20 + 30mL) *10^-3
[Ba2+] = 0.32 M
The concentration of Barium ion in solution is 0.32 M
The answer is b thank me later :)
The F2 molecular orbital diagram shows 4e- are in the highest energy antibonding (destabilizing) molecular orbitals resulting in a bond order = 1.
Single bonds are easier to break and therefore more reactive. So the answer is yes.