Answer:
give me brainliest first and ill give u the correct anwers
Explanation:
1 The question asks for a certain quantity of examples in a list (Name 6 factors that contributed to the start of World War I, What 3 subatomic particles constitute an atom? etc).
2 The question is academically precise and, therefore, indecisive in the wording (What are the 2 kinds of loading most professional engineers and academics in the field of engineering today generally consider to be relevant in most cases when considering typical types of structure usually made of common materials using well-understand methods?)
3 The question challenges the answerer to defend a position as opposed to merely rattling off a list based on knowledge alone, thereby invoking higher levels of Bloom's Taxonomy. (What are 4 arguments that could be used to defend arguments made by the physicists of the day that electromagnetic waves must move through an illusive substance called 'the ether?)
<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.
Answer:
V' = 0.84 m/s
Explanation:
given,
Linear speed of the ball, v = 2.85 m/s
rise of the ball, h = 0.53 m
Linear speed of the ball, v' = ?
rotation kinetic energy of the ball

I of the moment of inertia of the sphere

v = R ω
using conservation of energy


Applying conservation of energy
Initial Linear KE + Initial roational KE = Final Linear KE + Final roational KE + Potential energy



V'² = 0.7025
V' = 0.84 m/s
the linear speed of the ball at the top of ramp is equal to 0.84 m/s