Refer to the diagram shown below.
Assume that air resistance is ignored.
Note:
The distance, h, of a falling object with initial vertical velocity of zero at time t is
h = (1/2)gt²
where
g = 9.8 m/s²
The initial vertical velocity of the supplies is 0 m/s.
It the time taken for the supplies to reach the ground is t, then
(50 m) = (1/2)*(9.8 m/s²)*(t s)²
Hence obtain
t² = 50/4.9 = 10.2041
t = 3.1944 s
The horizontal distance traveled at a speed of 100 m/s is
d = (100 m/s)*(3.1944 s) = 319.44 m
Answer: 319.4 m (nearest tenth)
Answer:
non-accelerated movement
velocity versus time a horizontal straight line.
distance versus time gives a horizontal straight line.
accelerated motion
graph of velocity versus time s an inclined line and the slope
graph of distance versus time is a parabola of the form
Explanation:
In kinematics there are two types of steely and non-accelerated movements
In a the velocity of the body is constant therefore a speed hook against time gives a horizontal straight line.
A graph of distance versus time is a straight line whose slope is the velocity of the body
x = v t
In an accelerated motion the velocity changes linearly with time, so a graph of velocity versus time is an inclined line and the slope is the value of the acceleration of the body
v = v₀ + a t
A graph of distance versus time is a parabola of the form
x =v₀ t + ½ a t²
That latest value for the Angle is in Grads, not in Kilograms.
Apply law of conservation of momentum along vertical direction.


Apply law of conservation of momentum along the horizontal direction





The second ball velocity is 
The magnitud of final total momentum is

The magnitude of final energy is

The motorized toy boat experiences a net force of 0 N between 4 s and 8 s.
The motorized toy boat moves at 8 m/s (u) at 4 s and at 8 m/s (v) at 8 s. We can calculate the acceleration (a) in that period using the following kinematic expression.

The object with a mass (m) of 2.0 kg experiences an acceleration of 0 m/s². We can calculate the net force (F) in that period using Newton's second law of motion.

The motorized toy boat experiences a net force of 0 N between 4 s and 8 s.
Learn more: brainly.com/question/13447525