D = distance between the cars at the start of time = 680 km
v₁ = speed of one car
v₂ = speed of other car = v₁ - 10
t = time taken to meet = 4 h
distance traveled by one car in time "t" + distance traveled by other car in time "t" = D
v₁ t + v₂ t = D
(v₁ + v₂) t = D
inserting the values
(v₁ + v₁ - 10) (4) = 680
v₁ = 90 km/h
rate of slower car is given as
v₂ = v₁ - 10
v₂ = 90 - 10 = 80 km/h
Yes that's a true statement. That's why grandmother put a hot water bottle to warm up her bed, and not a hot bar of steel or lead.
Answer:
Explanation:
E=(σ/ε0)
As noted by Dirac the field is the same no matter how far you are from the sheet. When your charge covers a conducting plane, as in your case, the field is, D/eo ,(D is charge density). Because the field inside the conductor (no matter how thin) is zero. The only time the field is, D/2eo, is when you have just a sheet of charge, by itself, not on a conducting plane."
Heat, like sound, is kinetic energy. Molecules at higher temperatures heave more energy, thus they can vibrate faster. Since the molecules vibrate faster, sound waves can travel more quickly.
So the answer is A.