I don’t know sorry ;khbadkhb didhwbck( khwdicdwbihwd
An initial velocity is:
v o = 25 m/s
The vertical component of the initial velocity:
v o y = v o * sin 60° =
= v o * √3 / 2 = 25 m/s * √3 / 2 = 21.65 m/s
Answer:
The approximate vertical component of the initial velocity is 21.65 m/s.
Answer:
It's held together by the nuclear force.
Explanation:
There are <em>more</em> elemental forces than just the electromagnetic one. In this case, it is the nuclear force (called also strong force) the one that holds the nucleus together because it is stronger than the electromagnetic force over such short distances as the one inside the atomic nucleus.
First, you find what 20% of 10 gallons of gas would be. This will show how many gallons the car actually uses.
10 gallons x 20% =
10 x 0.20 =
2 gallons used
Then you subtract that number from the total 10 gallons to get how many gallons of gas would be wasted.
10 gallons - 2 gallons =
8 gallons of gas wasted
The third equation of free fall can be applied to determine the acceleration. So that Paola's acceleration during the flight is 39.80 m/
.
Acceleration is a quantity that has a direct relationship with velocity and also inversely proportional to the time taken. It is a vector quantity.
To determine Paola's acceleration, the third equation of free fall is appropriate.
i.e
=
± 2as
where: V is the final velocity, U is the initial velocity, a is the acceleration, and s is the distance covered.
From the given question, s = 20.1 cm (0.201 m), U = 4.0 m/s, V = 0.
So that since Poala flies against gravity, then we have:
=
- 2as
0 =
- 2(a x 0.201)
= 16 - 0.402a
0.402a = 16
a = 
= 39.801
a = 39.80 m/
Therefore Paola's acceleration is 39.80 m/
.
Visit: brainly.com/question/17493533