Answer:
The current is 
Explanation:
From the question we are told that
The radius is 
The current density is 
The distance we are considering is 
Generally current density is mathematically represented as

Where A is the cross-sectional area represented as

=> 
=> 
Now the change in current per unit length is mathematically evaluated as

Now to obtain the current (in A) through the inner section of the wire from the center to r = 0.5R we integrate dI from the 0 (center) to point 0.5R as follows


![I = 2\pi *(9.0*10^{6}) [\frac{r^4}{4} ] | \left 0.001585} \atop 0}} \right.](https://tex.z-dn.net/?f=I%20%20%3D%202%5Cpi%20%2A%289.0%2A10%5E%7B6%7D%29%20%5B%5Cfrac%7Br%5E4%7D%7B4%7D%20%5D%20%20%7C%20%5Cleft%20%20%20%200.001585%7D%20%5Catop%200%7D%7D%20%5Cright.)
![I = 2\pi *(9.0*10^{6}) [ \frac{0.001585^4}{4} ]](https://tex.z-dn.net/?f=I%20%20%3D%202%5Cpi%20%2A%289.0%2A10%5E%7B6%7D%29%20%5B%20%5Cfrac%7B0.001585%5E4%7D%7B4%7D%20%5D)
substituting values
![I = 2 * 3.142 * 9.00 *10^6 * [ \frac{0.001585^4}{4} ]](https://tex.z-dn.net/?f=I%20%20%3D%202%20%2A%20%203.142%20%20%2A%20%209.00%20%2A10%5E6%20%2A%20%20%20%5B%20%5Cfrac%7B0.001585%5E4%7D%7B4%7D%20%5D)

Answer:
3.62 m and - 1.4 m
Explanation:
Consider a location towards the positive side of x-axis beyond the location of charge Q₂
x = distance of the location from charge Q₂
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = 1.62 m
So location is 2 + 1.62 = 3.62 m
Consider a location towards the negative side of x-axis beyond the location of charge Q₁
x = distance of the location from charge Q₁
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = - 1.4 m
Answer:
44200 N
Explanation:
To calculate the average force exerted on the car, we will use the following equation

Where F is the average force, t is the time, m is the mass, vf is the final velocity and vi is the initial velocity of the car.
Replacing t = 0.5s, m = 1300 kg, vf = -2 m/s, and vi = 15 m/s and solving for F, we get

Therefore, the average force exerted on the car by the wall was 44200 N
Answer:
honestly it's gonna be 14.6 m/s
Explanation: