Acceleration can be defined as the rate of change in the velocity of an object. Option C is correct.
<h3>What is
Acceleration?</h3>
- It is defined as the rate of change in velocity.
- It can also be defined as the rate of change in position in a particular direction.

Where,
- acceleration
- change in velocity
- time
Therefore, acceleration can be defined as the rate of change in the velocity of an object.
Learn more about Velocity:
brainly.com/question/2239252
Answer:
y = -19.2 sin (23.15t) cm
Explanation:
The spring mass system is an oscillatory movement that is described by the equation
y = yo cos (wt + φ)
Let's look for the terms of this equation the amplitude I
y₀ = 19.2 cm
Angular velocity is
w = √ (k / m)
w = √ (245 / 0.457
w = 23.15 rad / s
The φ phase is determined for the initial condition t = 0 s
, the velocity is negative v (0) = -vo
The speed of the equation is obtained by the derivative with respect to time
v = dy / dt
v = - y₀ w sin (wt + φ)
For t = 0
-vo = -yo w sin φ
The angular and linear velocity are related v = w r
v₀ = w r₀
v₀ = v₀ sinφ
sinφ = 1
φ = sin⁻¹ 1
φ = π / 4 rad
Let's build the equation
y = 19.2 cos (23.15 t + π/ 4)
Let's use the trigonometric ratio π/ 4 = 90º
Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a
y = -19.2 sin (23.15t) cm
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.