Answer:
1.004×10²²
Explanation:
The molar mass of carbon is 12 g/mol
which means that:
<u>1 mole of carbon atoms has a mass of 12 grams.</u>
Since, diamond is a allotrope of carbon.
Mass of 1.00-carat diamond in grams is:
1.00 carat = 0.200 g
<u>
Since, 1 mole of C contains 6.022×10²³ atoms of C</u>
So,
12 grams contains 6.022×10²³ atoms of C
1 gram contains 6.022×10²³/ 12 atoms of C
0.200 gram contains (6.022×10²³/ 12)×0.200 atoms of C
Thus,
<u>1 carat diamond contains 1.004×10²² atoms of C.</u>
The reaction of benzaldehyde with acetone and sodium hydroxide produces DibenzalacetoneThis is an example of an aldol condensation reaction.
Chemical reactions often involve color changes, temperature changes, gas evolution, or precipitate formation. Simple examples of everyday reactions are digestion, combustion, and cooking. As the name suggests, simple reactants produce or synthesize more complex products. The basic form of a synthetic reaction is A + B → AB. A simple example of a synthetic reaction is the formation of water from its elements hydrogen and oxygen: 2 H2(g) + O2(g) → 2 H2O(g).
A physical reaction is a reaction in which a change in the physical properties of matter or substances occurs. Physical properties include density, mass, and volume. The definition of a physical reaction is a reaction in which molecules undergo molecular rearrangements but do not change chemically.
Learn more about the reaction here
brainly.com/question/11231920
#SPJ4
After 25 days, it remains radon 5.9x10^5 atoms.
Half-life is the time required for a quantity (in this example number of radioactive radon) to reduce to half its initial value.
N(Ra) = 5.7×10^7; initial number of radon atoms
t1/2(Ra) = 3.8 days; the half-life of the radon is 3.8 days
n = 25 days / 3.8 days
n = 6.58; number of half-lifes of radon
N1(Ra) = N(Ra) x (1/2)^n
N1(Ra) = 5.7×10^7 x (1/2)^6.58
N1(Ra) = 5.9x10^5; number of radon atoms after 25 days
The half-life is independent of initial concentration (size of the sample).
More about half-life: brainly.com/question/1160651
#SPJ4
The molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
<h3>How to calculate molarity?</h3>
The molarity of a solution can be calculated using the following formula:
Molarity = no of moles/volume
According to this question, a solution consists of 35.00 g of CuSO4 dissolved in 250.0 mL of water.
no.of moles of CuSO4 = 35g ÷ 159.6g/mol
no. of moles of CuSO4 = 0.22 moles
Therefore; molarity of CuSO4 solution is calculated as follows:
M = 0.22 ÷ 0.25
M = 0.88M
Therefore, the molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
Learn more about molarity at: brainly.com/question/12127540
Answer:
Acknowledge the source of relative weight of titanium.
Explanation:
Titanium is a chemical element which durable form of metal. Titanium is 45% lighter than steel. Titanium is made by combination of multiple elements. Titanium is very difficult to extract and this is the reason this element is considered expensive. The students examining the titanium must record the weight of titanium before exploring the characteristics and properties.