Answer:
d = 0.9 g/L
Explanation:
Given data:
Number of moles = 1 mol
Volume = 24.2 L
Temperature = 298 K
Pressure = 101.3 Kpa (101.3/101 = 1 atm)
Density of sample = ?
Solution:
PV = nRT (1)
n = number of moles
number of moles = mass/molar mass
n = m/M
Now we will put the n= m/M in equation 1.
PV = m/M RT (2)
d = m/v
PM = m/v RT ( by rearranging the equation 2)
PM = dRT
d = PM/RT
The molar mass of neon is = 20.1798 g/mol
d = 1 atm × 20.1798 g/mol / 0.0821 atm. L/mol.K × 273K
d = 20.1798 g/22.413 L
d = 0.9 g/L
Answer:
FeCl3 + 3KOH → Fe(OH)3 + 3KCl
Explanation:
Answer:
Explanation:
Nitrogen gas in nitrogen cylinder is in gaseous form only . So when gas is released , pressure decreases because moles of gas in the cylinder decreases .
Propane gas in cylinder is in liquified form . The gas is partially in gaseous and liquid form . So when gas is released outside , pressure decreases inside but due to low pressure , some liquid form is converted into gaseous form which restores the pressure of gas inside cylinder . Hence , the pressure of gas remains unchanged inside cylinder.
The number of moles of sodium dichromate from the number of moles of oxygen atoms can be determined through stoichiometry. Using the molecular formula of the compound, Na2Cr2O7, 1 mole of the compound contains 7 moles of oxygen. Hence, 14 moles O2*(1 mole Na2Cr2O7/ 7 mole O2) is equal to 2 moles <span>Na2Cr2O7.</span>