The answer is number four but the same time I don’t really know it’s like ha ha ha ha ha ha ha ha ha ha sorry
Answer:
Explanation:
Given:
V1 = 200 ml
T1 = 20 °C
= 20 + 273
= 293 K
P1 = 3 atm
P2 = 2 atm
V2 = 400 ml
Using ideal gas equation,
P1 × V1/T1 = P2 × V2/T2
T2 = (2 × 400 × 293)/200 × 3
= 234400/600
= 390.67 K
= 390.67 - 273
= 117.67 °C
This is a benefit I’m not sure if a negative
This strong current of warm water influences the climate of the east coast of Florida, keeping temperatures there warmer in the winter and cooler in the summer than the other southeastern states. Since the Gulf Stream also extends toward Europe, it warms western European countries as well.
Answer:
The answer to your question is: 0.25 l
Explanation:
Data
P1 = 1 atm
V1 = 0.5 l
P2 =2 atm
V2 = ?
T = constant
Formula
V1P1 = V2P2
Clear V2 from the formula
V2 = V1P1/P2
Substitution
V2 = (0.5)(1)/2 substitution
= 0.25 l result
Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.