For the answer to the question above, asking to w<span>rite the complete balanced equation for the reaction between aluminum metal (Al) and oxygen gas (O2)and You do not need to make the subscripts smaller.
My answer would be,
</span><span>4Al(s) + 3O2(g) --->2 Al2O3(s)
</span>
I hope this helps.
Answer:
D & E
Explanation:
I think this is dealing with latent heat and D & E would be the range where you will find solid and liquid phases in equilibrium, cuz it starts as gas at from A to B, B to C is gas and liquid equilibrium, C to D is liquid, D to E solid and liquid, and then E to F is solid.
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
Answer:
all of the above
Explanation:
i got the answer right on cK-12
Answer:
621.2090000000001 grams
Explanation:
1 moles Calcium to grams = 40.078 grams
15.5*40.078 = 621.2090000000001 g