The lattice energy of the compounds is distributed in the following decreasing order of magnitude: MgO > CaO > NaF > KCl.
<h3>KCl or NaF, which has a higher lattice energy?</h3>
The lattice energy increases with increasing charge and decreasing ion size.(Refer to Coulomb's Law.)MgF2 > MgO.Following that, we can examine NaF and KCl (both of which have 1+ and 1-charges), as well as atomic radii.NaF will have a larger LE than KCl since Na is smaller then K and F was smaller than Cl.
<h3>MgO or CaO, which has a larger lattice energy?</h3>
MGO is more difficult than CaO, hence.This is because "Mg" (two-plus) ions are smaller than "Ca" (two-plus) ions in size.MgO has higher lattice energy as a result.
To know more about compounds visit:
brainly.com/question/14117795
#SPJ4
The temperature of the gas is proportional to the average kinetic energy of its molecules. Faster moving particles will collide with the container walls more frequently and with greater force. This causes the force on the walls of the container to increase and so the pressure increases.
Answer:
When the electron changes levels, it decreases energy and the atom emits photons. The photon is emitted with the electron moving from a higher energy level to a lower energy level. The energy of the photon is the exact energy that is lost by the electron moving to its lower energy level.
Explanation:
Specific heat capacity is the amount of energy required to raise one gram of substances by 1 degree celsius . Therefore specific heat capacity for tatanium is 89.7j /( 33.0g x5.2 degree celsius) = 0.52j/g degree celcius
Molar mass for tatanium is 47.9 g/mole
heat is therefore 47.9 g/mole x 0.52j/g =24.9j/mole