Answer:
<em>the <u>valency of an element</u> is its combining capacity that is the number of electrons it requires to lose, gain or share in order to become neutral.</em>
[ An element can become neutral if it completes it's octet. That is if an element has 8 electrons in it'd outermost shell then it is considered neutral ]
- The valence of Magnesium is 2 because it requires to lose 2 electrons to become neutral.
- whereas, the valence of Oxygen is 2 because it needs to gain 2 electrons to become stable.
Hence they both have the same valence.
One may say that oxygen's valence is -2 while that of Magnesium is + 2. It's meaning is still the same but "-" sign indicates that oxygen will be gaining electrons in the process of becoming stable.
Neutron Stars are considered as the smallest celestial bodies
Nature of the solute and solvent - The amount of solute that dissolves depends on what type of solute it is. While only 1 gram of lead (II) chloride can be dissolved in 100 grams of water at room temperature, 200 grams of zinc chloride can be dissolved. This means that a greater amount of zinc chloride can be dissolved in the same amount of water than lead II chloride.
Temperature - Increasing the temperature not only increases the amount of solute that will dissolve but also increases the rate at which the solute will dissolve. For gases, the reverse is true. An increase in temperature decreases both solubility and rate of solution.
Pressure - Changes in pressure have practically no effect on solubility. For gaseous solutes, an increase in pressure increases solubility and a decrease in pressure decreases solubility. Example: When the cap on a bottle of soda pop is removed, pressure is released, and the gaseous solute bubbles out of solution. This escape of a gas from solution is called effervescence.
Stirring - Stirring brings fresh portions of the solvent in contact with the solute. Stirring, therefore, allows the solute to dissolve faster.
Hope this helps!! (If not I'm sorry!)
The highest energy occupied molecular orbital in the C-C bond of the C₂ molecule is 2pπ orbitals.
<h3>What is Molecular Orbital Theory?</h3>
According to this theory,
- Molecular orbitals are formed by intermixing of atomic orbitals of two or more atoms having comparable energies
- The number of molecular orbitals formed is equal to the number of atomic orbitals combined.
- The shape of molecular orbitals formed depends on the type of atomic orbitals combined
- Only atomic orbitals having comparable energies and the same orientation can intermix
- Bonding M.O. is formed by the additive effect of atomic orbitals and thus, has lower energy and high stability.
- Antibonding M.O. is formed by the subtractive effect of atomic orbitals and thus, has higher energy and low stability.
- Bonding M.O. is represented by
while Antibonding M.O. is represented by 
Molecular Orbital Diagram of C₂
Learn more about Molecular Orbital Theory:
brainly.com/question/17371976
#SPJ4