Answer:
It is 20. g HF
Explanation:
H2 + F2 ==> 2HF ... balanced equation
Since the question is asking us to find the mass of product formed, we will want to first convert the molecules of H2 into moles of H2 (we could do this at the end of the calculations, but it's just as easy to do it now).
moles of H2 present (using Avogadro's number):
3.0x1023 molecules H2 x 1 mole H2/6.02x1023 molecules = 0.498 moles H2
From the balanced equation, we see that 1 mole H2 produces 2 moles HF. Therefore, we can now find the theoretical mass of HF produced from 0.498 moles H2:
0.498 moles H2 x 2 moles HF/1 mol H2 = 0.996 moles HF formed.
The molar mass of HF = 20.01 g/mole, thus...
0.996 moles HF x 20.01 g/mole = 19.93 g HF = 20. g HF formed (to 2 significant figures)
Energy(heat) required to raise the temperature of water : 418.6 J
<h3>Further explanation </h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Specific heat of water = 4.186 J/g*C.
∆T(raise the temperature) : 10° C
mass = 10 g
Heat required :

<span><span>Yes.
An element that is highly electronegative pulls more on the electrons
in a bond, such as oxygen in H20. This creates a polar bond, where
there is a small negative charge on the oxygen, and a small positive
charge in between the hydrogens.
</span>Credit goes to "Erin M" answered on yahoo answers a decade ago.
</span>
Answer:
Higher than 59 °C because dipole-dipole interactions in iodine monochloride are stronger than dispersion forces in bromine.
Explanation:
I just took the test and i got it right