1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivolga24 [154]
3 years ago
5

In RSA Digital Signature, Suppose Bob wants to send a signed message (x = 4) to Alice. The first steps are exactly t eps are exa

ctly the same as it is done for an RSA encryption: Bob computes his RSA parameters and sends the public key to Alice. We know p = 3, q=11, and bob choose e=3. (Hint: We learn RSA algorithm and key generation in Week 7) (1) What is the public key pair Bob sends to Alice? (2) What is the value of signature s? (3) What is the value of verkpubA(x,s)? Show all intermediate steps clearly.
Engineering
1 answer:
Luda [366]3 years ago
4 0

Answer:

what r u on

Explanation:

You might be interested in
Write a grammar for a language whose sentences start with an even and non-zero number of x’s, end with an odd number of z’s, and
sveta [45]

Answer:

GRAMMAR

S -> AB

A -> xxAyy | xxyy

B -> yyBzz | yz

EXPLANATION

A is for even number of x's followed by that number of y's

B is for odd number of y's followed by that number of z's

3 0
3 years ago
One cylinder in the diesel engine of a truck has an initial volume of 650 cm3 . Air is admitted to the cylinder at 35 ∘C and a p
kupik [55]

Answer:

1) the final temperature is T2 = 876.76°C

2) the final volume is V2 = 24.14 cm³

Explanation:

We can model the gas behaviour as an ideal gas, then

P*V=n*R*T

since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:

P*V^k = constant = C, k= adiabatic coefficient for air = 1.4

then the work will be

W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)

W = (P1*V1/T1)*(T2-T1)/(1-k)  

T2 = (1-k)W* T1/(P1*V1) +T1

replacing values (W=-450 J since it is the work done by the gas to the piston)

T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C

the final volume is

TV^(k-1)= constant

therefore

T2/T1= (V2/V1)^(1-k)

V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³

3 0
3 years ago
If engineering is easy then why don't most people join?
Mazyrski [523]
Engineering requires a lot of school
5 0
3 years ago
Read 2 more answers
Suppose a student rubs a Teflon rod with wool and then briefly touches it to an initially neutral aluminum rod suspended by insu
Oliga [24]

Answer:

Due to touch of teflon, its charge will reduce but will not go to zero. Some amount of its initial charge will be transferred to Aluminum rod. So, aluminum rod will have a non-zero negative charge.

Explanation:

3 0
4 years ago
Pipe (2) is supported by a pin at bracket C and by tie rod (1). The structure supports a load P at pin B. Tie rod (1) has a diam
Galina-37 [17]

Answer:

P_max = 25204 N

Explanation:

Given:

- Rod 1 : Diameter D = 12 mm , stress_1 = 110 MPa

- Rod 2: OD = 48 mm , thickness t = 5 mm , stress_2 = 65 MPa

- x_1 = 3.5 mm ; x_2 = 2.1 m ; y_1 = 3.7 m

Find:

- Maximum Force P_max that this structure can support.

Solution:

- We will investigate the maximum load that each Rod can bear by computing the normal stress due to applied force and the geometry of the structure.

- The two components of force P normal to rods are:

               Rod 1 : P*cos(Q)  

               Rod 2: - P*sin(Q)

where Q: angle subtended between x_1 and Rod 1 @ A. Hence,

               Q = arctan ( y_1 / x_1)

               Q = arctan (3.7 / 2.1 ) = 60.422 degrees.

- The normal stress in each Rod due to normal force P are:

               Rod 1 : stress_1 = P*cos(Q)  / A_1

               Rod 2: stress_2 = - P*sin(Q)  / A_2

- The cross sectional Area of both rods are A_1 and A_2:

               A_1 = pi*D^2 / 4

               A_2 = pi*(OD^2 - ID^2) / 4

- The maximum force for the given allowable stresses are:

               Rod 1: P_max =  stress_1 * A_1 / cos(Q)

                          P_max = (110*10^6)*pi*0.012^2 / 4*cos(60.422)

                          P_max = 25203.61848 N

               Rod 2: P_max =  stress_2 * A_2 / sin(Q)

                          P_max = (65*10^6)*pi*(0.048^2 - 0.038^2) / 4*sin(60.422)

                          P_max = 50483.4 N

- The maximum force that the structure can with-stand is governed by the member of the structure that fails first. In our case Rod 1 with P_max = 25204 N.

             

8 0
3 years ago
Other questions:
  • Three return steam lines in a chemical processing plan enter a collection tank operating at a steady state at 1 bar. Steam enter
    11·1 answer
  • Show that the solution of thin airfoil theory of a symmetric airfoil given below satisfies the Kutta condition. What angle of at
    11·1 answer
  • Block B starts from rest, block A moves with a constant acceleration, and slider block C moves to the right with a constant acce
    11·1 answer
  • The pressure forces on a submersed object will be (A)- Tangential to the objects body (B)- Parallel (C)- Normal (D)- None of the
    10·1 answer
  • The water behind Hoover Dam in Nevada is 221 m higher than the Colorado River below it. At what rate must water pass through the
    6·1 answer
  • A 1200-kg car moving at 20 km/h is accelerated
    5·1 answer
  • Calculate the percentage of recyclables in high socioeconomic localities.
    13·1 answer
  • Which of the following suggestions would best help alleviate the Gulf of Mexico dead zone?
    13·1 answer
  • ما سبب نزول الاية
    6·1 answer
  • This acronym is a reminder of the most common types of hazards or injuries caused by electricity.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!