Answer:
D.) Transfer input energy from the power source throughout the machine.
Explanation:
Since the complex abnormalities of energy efficiency is depicted by the autonomy within self-operating machines, the correct answer is D.
Answer: c. The VW engineers involved were ethically obligated to hold paramount the health, welfare and safety of the public even if their supervisors directed them to implement software and hardware that enabled cheating on the emissions testing software.
Explanation: The National Society of professional Engineers, NSPE define the code of ethics which must guide engineers in their duty. These codes act as principles of personal conduct, towards the public and their employers.
One of the areas covered by these codes is overriding importance of the safety and health of the public to any other factor. In addition, engineers are to avoid deception and maintain the reputation of their profession. These cannot be sacrificed for the financial gain of their employers or explained away by saying they are following the direction of their employers. While they have certain responsibilities to their employers, the health welfare and safety of the public is more important.
Answer:
c. less than 60 mi/h
Explanation:
To calculate the average speed of the bus, we need to calculate the total distance traveled by the bus, as well as the total time of travel of the bus.
Total Distance Traveled = S = 100 mi + 100 mi
S = 200 mi
Now, for total time, we calculate the times for both speeds from A to b and then B to C, separately and add them.
Total Time = t = Time from A to B + Time from B to C
t = (100 mi)/(50 mi/h) + (100 mi)(70 mi/h)
t = 2 h + 1.43 h
t = 3.43 h
Now, the average speed of bus will be given as:
Average Speed = V = S/t
V = 200 mi/3.43 h
<u>V = 58.33 mi/h</u>
It is clear from this answer that the correct option is:
<u>c. less than 60 mi/h</u>
Answer:
a) Ql=33120000 kJ
b) COP = 5.6
c) COPreversible= 29.3
Explanation:
a) of the attached figure we have:
HP is heat pump, W is the work supplied, Th is the higher temperature, Tl is the low temperature, Ql is heat supplied and Qh is the heat rejected. The worj is:
W=Qh-Ql
Ql=Qh-W
where W=2000 kWh
Qh=120000 kJ/h

b) The coefficient of performance is:

c) The coefficient of performance of a reversible heat pump is:

Th=20+273=293 K
Tl=10+273=283K
Replacing:
