1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
2 years ago
9

Engineers in Russia invented a new way to create colorful art with a __________.

Engineering
1 answer:
Setler [38]2 years ago
3 0

The Engineers in Russia invented a new way to create colorful art with constructivist art.

<h3>What is constructivist art?</h3>

Constructivist art was aimed to reflect modern industrial society and urban space in art. It uses industrial production forms and modest materials for its art production.

The constructivists proposed to replace traditional art's with a focus on construction as Engineers rather than a painter.

Therefore, the Engineers in Russia invented a new way to create colorful art with constructivist art using construction.

Learn more on constructivist here,

brainly.com/question/14054863

You might be interested in
Consider the equation y = 10^(4x). Which of the following statements is true?
o-na [289]

Answer: Plot of  \log y vs x would be linear with a slope  of 4.

Explanation:

Given

Equation is y=10^{4x}

Taking log both sides

\Rightarrow \log y=4x\log (10)\\\Rightarrow \log y=4x

It resembles with linear equation y=mx+c

Here, slope of \log y vs x is 4.

5 0
3 years ago
How many meters per second is 100 meters and 10 seconds
Elden [556K]

Answer:

the velocity = 10 m / sec if an object moves 100 m in 10s

5 0
2 years ago
The parts of a feature control frame are the tolerance value, the datum references, and the
Elan Coil [88]

Answer:

d

Explanation:

4 0
3 years ago
Twenty-five wooden beams were ordered or a construction project. The sample mean and he sample standard deviation were measured
aksik [14]

Answer:

Correct option: B. 90%

Explanation:

The confidence interval is given by:

CI = [\bar{x} - z\sigma_{\bar{x}} , \bar{x}+z\sigma_{\bar{x}} ]

If \bar{x} is 190, we can find the value of z\sigma_{\bar{x}}:

\bar{x} - z\sigma_{\bar{x}}  = 188.29

190 - z\sigma_{\bar{x}}  = 188.29

z\sigma_{\bar{x}}  = 1.71

Now we need to find the value of \sigma_{\bar{x}}:

\sigma_{\bar{x}} = s / \sqrt{n}

\sigma_{\bar{x}} = 5/ \sqrt{25}

\sigma_{\bar{x}} = 1

So the value of z is 1.71.

Looking at the z-table, the z value that gives a z-score of 1.71 is 0.0436

This value will occur in both sides of the normal curve, so the confidence level is:

CI = 1 - 2*0.0436 = 0.9128 = 91.28\%

The nearest CI in the options is 90%, so the correct option is B.

4 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
Other questions:
  • Describe the steps, tools, and technology needed in detail and
    12·1 answer
  • A gear box’s shaft is made of a hollow circular steel tube with allowable yield stress equal to σa????????o???? . The shaft is l
    7·1 answer
  • A circuit with ____ -diameter connecting wires at a _____ temperature will have the least electrical resistance.
    13·1 answer
  • A driver is traveling at 52 mi/h on a wet road. an object is spotted on the road 415 ft ahead and the driver is able to come to
    5·2 answers
  • A square isothermal chip is of width w = 5 mm on a side and is mounted in a substrate such that its side and back surfaces are w
    7·1 answer
  • 1. Differentiate between speed and velocity.<br>​
    9·2 answers
  • Should i show my face?
    8·2 answers
  • Need help coding this i’m using python.
    11·1 answer
  • All of the following are drum brake components mounted to the backing plate, EXCEPT:
    12·1 answer
  • How many squares titles (20cm x 20cm) are needed to coat the sides and base of a pool which is 10m long, 6 meter wide and 3m dee
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!