-- Although it's not explicitly stated in the question,we have to assume that
the surface is frictionless. I guess that's what "smooth" means.
-- The total mass of both blocks is (1.5 + 0.93) = 2.43 kg. Since they're
connected to each other (by the string), 2.43 kg is the mass you're pulling.
-- Your force is 6.4 N.
Acceleration = (force)/(mass) = 6.4/2.43 m/s²<em>
</em> That's about <em>2.634 m/s²</em> <em>
</em>(I'm going to keep the fraction form handy, because the acceleration has to be
used for the next part of the question, so we'll need it as accurate as possible.)
-- Both blocks accelerate at the same rate. So the force on the rear block (m₂) is
Force = (mass) x (acceleration) = (0.93) x (6.4/2.43) = <em>2.45 N</em>.
That's the force that's accelerating the little block, so that must be the tension
in the string.
The answer is going be desert.
The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
Horizontal component = (10N) · sin (20°) = 3.42... N (rounded)
Vertical component = (10N) · cos (20°) = 9.39... N (rounded)