The propagation errors we can find the uncertainty of a given magnitude is the sum of the uncertainties of each magnitude.
Δm = ∑
Physical quantities are precise values of a variable, but all measurements have an uncertainty, in the case of direct measurements the uncertainty is equal to the precision of the given instrument.
When you have derived variables, that is, when measurements are made with different instruments, each with a different uncertainty, the way to find the uncertainty or error is used the propagation errors to use the variation of each parameter, keeping the others constant and taking the worst of the cases, all the errors add up.
If m is the calculated quantity, x_i the measured values and Δx_i the uncertainty of each value, the total uncertainty is
Δm = ∑
| dm / dx_i | Dx_i
for instance:
If the magnitude is a average of two magnitudes measured each with a different error
m =
Δm = |
| Δx₁ + |
| Δx₂
= ½
= ½
Δm =
Δx₁ + ½ Δx₂
Δm = Δx₁ + Δx₂
In conclusion, using the propagation errors we can find the uncertainty of a given quantity is the sum of the uncertainties of each measured quantity.
Learn more about propagation errors here:
brainly.com/question/17175455
Answer:



Explanation:
u = 4.0i−2.0j+3.0k v = −2.0i−2.0j+5.0k
Average acceleration is given by


The magnitude is

The magnitude is 
The angle is

The angle between
and the positive direction of the x axis is 
Answer:
this may be wrong but I am not sure
The flame on a gas stove heats the bottom of a metal pot is conduction.
The sun gives you a sunburn is a radiation
Answer:
Speed of car, v₁ = 55 m/s
Explanation:
It is given that,
Mass of Semi, m₁ = 9565 kg
Initial velocity of semi, u₁ = 55 m/s
Mass of car, m₂ = 992 kg
Initial velocity of car, u₂ = 0 (at rest)
Since, the collision between two objects is elastic and all the momentum is transferred to the car i.e final speed of semi, v₂ = 0
Let the speed of the car is v₁. Using conservation of linear momentum as :


v₁ = 55 m/s
Hence, the car move forward with a speed of 55 m/s.