<h2>
Density of the unknown liquid is 771.93 kg/m³</h2>
Explanation:
An empty graduated cylinder weighs 55.26 g
Weight of empty cylinder = 55.26 g = 0.05526 kg
Volume of liquid filled = 48.1 mL = 48.1 x 10⁻⁶ m³
Weight of cylinder plus liquid = 92.39 g = 0.09239 kg
Weight of liquid = 0.09239 - 0.05526
Weight of liquid = 0.03713 kg
We have
Mass = Volume x Density
0.03713 = 48.1 x 10⁻⁶ x Density
Density = 771.93 kg/m³
Density of the unknown liquid is 771.93 kg/m³
Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


The number of complete cycles the rotating mirror goes through before the angular velocity gets to zero is approximately 1166.8 revs
<h3>What is angular velocity?</h3>
Angular velocity is the ratio of the angle turned to the time taken.
The kinematic equation for angular velocity are presented as follows;
ω = ω₀ + α·t
θ = θ₀ + ω₀·t + 0.5·α·t²
Where;
θ₀ = The initial angle turned = 0
ω₀ = The initial angular velocity of the mirrors = 115 rad/s clockwise
α = The angular acceleration = (115 - (-115))rad/s/(85 s) = -46/17 m/s²
t = The duration of the motion;
When the angular velocity, ω is zero, we get;
0 = 115 - 46/17·t
t = 85/2
Which indicates;
θ = 0 + 115× (85/2) + 0.5×(46/17) ×(85/2)² = 7331.25
θ = 7331.25 radians
θ = 7331.25/(2×π) ≈ 1166.8 rev
The mirrors would have turned through approximately 1166.8 revolutions when the angular gets to zero
Learn more about angular velocity and acceleration here:
brainly.com/question/13014974
#SPJ1
Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s
Answer:
ok what do you need to know about ''campaign against crime''?
Explanation: