Answer:
The time taken is 
Explanation:
From the question we are told that
The mass of the ball is 
The time taken to make the first complete revolution is t= 3.60 s
The displacement of the first complete revolution is 
Generally the displacement for one complete revolution is mathematically represented as

Now given that the stone started from rest 


Now the displacement for two complete revolution is


Generally the displacement for two complete revolution is mathematically represented as

=> 
=> 
So
The time taken to complete the next oscillation is mathematically evaluated as

substituting values


<span><span>3,730 W is equal to about 5 horsepower. (4.9982 hp)</span></span>
I have a strange hunch that there's some more material or previous work
that goes along with this question, which you haven't included here.
I can't easily find the dates of Mercury's extremes, but here's some of the
other data you're looking for:
Distance at Aphelion (point in it's orbit that's farthest from the sun):
<span><span><span><span><span>69,816,900 km
0. 466 697 AU</span>
</span>
</span>
</span>
<span>
Distance at Perihelion
(</span></span><span>point in it's orbit that's closest to the sun):</span>
<span><span><span><span>46,001,200 km
0.307 499 AU</span> </span>
Perihelion and aphelion are always directly opposite each other in
the orbit, so the time between them is 1/2 of the orbital period.
</span><span>Mercury's Orbital period = <span><span>87.9691 Earth days</span></span></span></span>
1/2 (50%) of that is 43.9845 Earth days
The average of the aphelion and perihelion distances is
1/2 ( 69,816,900 + 46,001,200 ) = 57,909,050 km
or
1/2 ( 0.466697 + 0.307499) = 0.387 098 AU
This also happens to be 1/2 of the major axis of the elliptical orbit.
<u><em>Developed countries will see a decrease in natural resources, because their population will decrease.</em></u>
Sound intensity = 1/(r^2)
That is Sound intensity is indirectly proportional to the distance. Therefore, sound becomes 9 times less intense.