Answer:
e
Explanation:
i took it myself and got it right
Answer:
600 and 1500 [ohm
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is the product of the current by the resistance, so we have:
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
<u>Therefore:</u>
R = V/I
R1 = 60/(40*10^-3) = 1500 [ohm]
R2 = 60/(100*10^-3) = 600 [ohm]
So the resistance should be among 600 and 1500 [ohm]
The flow rate is 17gtts/min.
<h3>What is the drug infusion rate?</h3>
- The rate of infusion (or dosing rate) in pharmacokinetics refers to the ideal rate at which a drug should be supplied to achieve a steady state of a fixed dose that has been shown to be therapeutically effective. This rate is not only the rate at which a drug is administered.
- The infusion volume is divided into drops, which is known as a drip-rate. The Drip Rate formula is as follows: Volume (mL) times time (h) equals drip-rate. A patient must get 1,000 mL of intravenous fluids over the course of eight hours.
- Infusion rates of 3–4 mg/kg per minute are advised by manufacturers to reduce rate-related adverse effects. Usually, the infusion lasts for several hours. Although not advised, rates exceeding 5 mg/kg per hour may be tolerated by some patients.
- If no negative reactions occur, the rate may be increased in accordance with the table every 30 minutes up to a maximum rate of 3 ml/kg/hour (not to exceed 150 ml/hour).
To find the flow rate is 17gtts/min:

Therefore, The flow rate is 17gtts/min.
To learn more about infusion rate, refer to:
brainly.com/question/22761958
#SPJ9
ANSWER IS A)
THE SPEED IS 25 M/S FOR BOTH PEOPLE
Answer:
A. Nuclear fusion requires very high pressures and temperatures.
Explanation: