Answer:
The only incorrect statement is from student B
Explanation:
The planet mercury has a period of revolution of 58.7 Earth days and a rotation period around the sun of 87 days 23 ha, approximately 88 Earth days.
Let's examine student claims using these rotation periods
Student A. The time for 4 turns around the sun is
t = 4 88
t = 352 / 58.7 Earth days
In this time I make as many rotations on itself each one with a time to = 58.7 Earth days
#_rotaciones = t / to
#_rotations = 352 / 58.7
#_rotations = 6
therefore this statement is TRUE
student B. the planet rotates 6 times around the Sun
t = 6 88
t = 528 s
The number of rotations on itself is
#_rotaciones = t / to
#_rotations = 528 / 58.7
#_rotations = 9
False, turn 9 times
Student C. 8 turns around the sun
t = 8 88
t = 704 days
the number of turns on itself is
#_rotaciones = t / to
#_rotations = 704 / 58.7
#_rotations = 12
True
The only incorrect statement is from student B
Let
be the height of the building and thus the initial height of the ball. The ball's altitude at time
is given by

where
is the acceleration due to gravity.
The ball reaches the ground when
after
. Solve for
:


so the building is about 16 m tall (keeping track of significant digits).
Answer:
B. the force of friction of the road on the tires
Explanation:
Unless the car engine is like jet engine, the main force that accelerates the car forward is the force of friction of the road on the tires, which is ultimately driven by the force of engine on the tires shaft. As the engine, and the shaft are part of the system, their interaction is internal. According to Newton laws of motion, the acceleration needs external force, in this case it's the friction of the road on the tires.