The reduction of a less active metal by a more active one is called metal displacement reactions. For example:
Fe + CuSO4 → FeSO4 + Cu
<h3>What is metal displacement reaction? </h3>
Displacement reactions is a reaction which includes a metal and the compound of a other metal. A more reactive metal will push or displace out a less reactive metal from its compound in this displacement reaction. The metal which is less reactive left uncombined after the reaction.
As we know that, electrons are the basis of the chemical reactions. If chemical compound or element A is more easily oxidized than B, then according to the terms of the activity series, the elements which are more easily oxidized can react with more chemicals, since they are able to act as a reducing agents for more chemicals.
Since, Metal ions are positively charged ions as they lose electrons. Some metals give up their electrons more readily than others and become more reactive.
Thus, we concluded that the reduction of a less active metal by a more active one is called metal displacement reactions. For example:
Fe + CuSO4 → FeSO4 + Cu
learn more about metal displacement reaction:
brainly.com/question/11777638
#SPJ4
The tool or instrument which is used to measure an object’s mass is electronic balance
Mass is a fundamental quantity
<h3>What is fundamental quantities?</h3>
Fundamental quantities can be defined as those physical quantities which forms the basic unit of measurement. They are the quantities upon which other quantities and units are derived from.
Mass is measured in kilograms (kg)
Other examples of fundamental quantities apart from mass are as follows:
- Length
- Time
- Amount of substances
- Luminous intensity
- Temperature
- Magnetic flux
So therefore, the tool or instrument which is used to measure an object’s mass is electronic balance
Learn more about fundamental/physical quantities:
brainly.com/question/23036403
#SPJ1
Question requires a change resulting in an increase in both forward and reverse reactions. Now lets discuss options one by one and see there impact on rate of reactions.
1) <span>A decrease in the concentration of the reactants:
When concentration of reactant is decreased it will shift the equilibrium in Backward direction, so resulting in increasing the backward reaction and decreasing the forward direction. Hence, this option is incorrect.
2) </span><span>A decrease in the surface area of the products:
Greater the surface Area greater is the chances of collision and greater will be the rate of reaction. As the surface area of products is decreased it will not favor the backward reaction. Hence again this statement is incorrect according to given statement.
3) </span><span>An increase in the temperature of the system:
An increase in temperature will shift the reaction in endothermic side. Hence, if the reaction is endothermic, an increase in temperature will increase the rate of forward direction or if the reaction is exothermic it will increase the rate of reverse direction. Hence, this option is correct according to given statement.
4) </span><span>An increase in the activation energy of the forward reaction:
An increase in Activation energy will decrease the rate of reaction, either it is forward or reverse. So this is incorrect.
Result:
Hence, the correct answer is,"</span>An increase in the temperature of the system".
Answer: State
Explanation:
The rock on the left is more shiny than the right, so that’s incorrect.
The rocks are not the same color, so that’s also incorrect.
Even though you can’t feel the textures, the right rock looks grainy and the left on doesn’t.
They both are solid, so that is the correct answer.
When ammonium chloride NH4Cl is added to water and stirred, it dissolves spontaneously (this is the basis for ΔG) for and the resulting solution feels cold (endothermic, the basis for ΔH). Without doing any calculations, we can easily deduce the signs of ΔG, ΔH, and ΔS for this process based on the observations.
ΔG < 0 (it is spontaneous)
ΔH < 0 (because the process is endothermic - it absorbs energy)
ΔS > 0 (entropy increases because of the dissolution of NH4Cl in water