The first answer is B and the second answer is B
Answer:
±0.005 g
Explanation:
The uncertainty depends on whether the measurement was obtained manually or digitally.
1. Manual
The minimum uncertainty is ±0.01 g.
It may be greater, depending on random or personal errors
2. Digital
Most measurements of mass are now made on digital scales.
A digital device must always round off the measurement it displays.
For example, if the display reads 20.00, the measurement must be between 20.005 and 19.995 (±0.005).
If the measured value were 20.006, the display would round up to 20.01.
If the measured value were 19.994, the display would round down to 19.99.
The uncertainty is ±0.005 g.
The scale shown below would display a mass of 20.00 g
Answer:
1.14 M
Explanation:
Step 1: Calculate the moles corresponding to 317 g of calcium chloride (solute)
The molar mass of calcium chloride is 110.98 g/mol.
317 g CaCl₂ × 1 mol CaCl₂/110.98 g CaCl₂ = 2.86 mol CaCl₂
Step 2: Calculate the molarity of the solution
Molarity is equal to the moles of solute divided by the liters of solution.
M = moles of solute / liters of solution
M = 2.86 mol / 2.50 L = 1.14 mol/L = 1.14 M
Answer:
The answer to your question is P = 1.64 atm
Explanation:
Data
Volume = 2.5 x 10⁷ L
Temperature = 22°C
Pressure = ?
Moles = 1.7 x 10⁶
R = 0.082 atm L/ mol°K
Process
1.- Convert temperature to °K
Temperature = 22 + 273
= 295°K
2.- Use the Ideal gas law to solve this problem
PV = nRT
- Solve for P
P = nRT / V
- Substitution
P = (1.7 x 10⁶)(0.082)(295) / 2.5 x 10⁷
- Simplification
P = 41123000 / 2.5 x 10⁷
- Result
P = 1.64 atm
Answer:
A
Explanation:
Same air has special carakteristik features