Answer:
The wavelength of the light emitted by a hydrogen atom for the given transition is 2166 nm.
Explanation:
The energy of nth energy levels of the H atom is given as:

Energy of the seventh energy level = 


Energy of the seventh energy level = 


Energy of the light emitted will be equal to the energy difference of the both levels.


Wavelength corresponding to energy E can be calculated by using Planck's equation:


The wavelength of the light emitted by a hydrogen atom for the given transition is 2166 nm.
Answer:
4.occupy a definite volume while taking the shape of their container.
Explanation:
Since the particles in a liquid are quite close together (not as close as a solid) they have a definete volume, and the particles are still able to move around as they wish they have no definite shape and take upon the shape of the container they are placed in.
Answer:
Explanation:
According to Bronsted-Lowry acids or base theory , the reagent capable of giving hydrogen ion or proton will be acid and that which accepts hydrogen ion or proton will be base .
C₉H₇N + HNO₂ ⇄ C₉H₇NH⁺ + NO₂⁻
If K > 1 , reaction is proceeding from left to right .
Hence HNO₂ is giving H⁺ or proton and C₉H₇N is accepting proton to form
C₉H₇NH⁺ .
Hence HNO₂ is bronsted acid and C₉H₇N is bronsted base .
B )
when K < 1 , reaction above proceeds from right to left . That means
C₉H₇NH⁺ is giving H⁺ so it is a bronsted acid and NO₂⁻ is accepting H⁺ so it is a bronsted base .
Hence , NO₂⁻ is a bronsted base and C₉H₇NH⁺ is a bronsted acid .
Answer:
to go against dangerous viral and bacteria
Explanation:
The organism would no longer grow.