Lithium shares more properties with Sodium, because they have the same number of valence electrons (one). Choice 1 is correct. Hope this helps!
Answer:
at the speed of light (
)
Explanation:
The second postulate of the theory of the special relativity from Einstein states that:
"The speed of light in free space has the same value c in all inertial frames of reference, where
"
This means that it doesn't matter if the observer is moving or not relative to the source of ligth: he will always observe light moving at the same speed, c.
In this problem, we have a starship emitting a laser beam (which is an electromagnetic wave, so it travels at the speed of light). The startship is moving relative to the Earth with a speed of 2.0*10^8 m/s: however, this is irrelevant for the exercise, because according to the postulate we mentioned above, an observer on Earth will observe the laser beam approaching Earth with a speed of
.
Answer:
10N to the left side towards you
Explanation:
The net force is the resultant force that acts on a body.
Force is a push or pull on a body.
Push to left side = 25N
Pull to the right = 15N
Net force = Push to left side - Pull to the right = 25N - 15N
Net force = 10N to the left side towards you
The net force is therefore 10N to the left side towards you
3.86 m/s^2 is the value of gravity on this large, but low-density, world.
given :
Kepler-12b
diameter= 1.7 times of Jupiter (R_Jupiter = 6.99 × 10^7 m),
mass = 0.43 Jupiter (M_Jupiter = 1.90 × 10^27 kg ).
g = GM/r^2
g = 6.67×10^-11 × 0.43×1.9×10^27/( 1.7×6.99×10^7)^2
g = 3.859 ~ 3.86 m/s^2
Gravity, also referred to as gravitation, is the unchanging force of attraction that binds all matter together in mechanics. It is by far the weakest known force in nature, so it has no effect on determining the internal properties of common matter.
On Earth, everything has weight, or a gravitational pull that is imposed by the planet's mass and proportional to the object's mass. A measure of the force of gravity is the acceleration that freely falling objects experience. At the surface of the Earth, gravity accelerates at a rate of about 9.8 meters per second. As a result, an object's speed increases during free fall by about 9.8 meters per second. At the Moon's surface, a freely falling body accelerates to about 1.6 m/s2.
To know more about gravity visit : brainly.com/question/14428640
#SPJ4
Answer:
d = 61.75 m
Explanation:
Given that,
A ball droped from a building.
We need to find how fast is it traveling after falling 3.55 s.
As it is dropped, its initial velocity is equal to 0.
Let d is the distance it covers after falling 3.55 s.
We can use second equation of motion to find d.

Here, u = 0 and a =g

So, it will cover 61.75 m after falling 3.55 seconds.