The direction of an electric current is by convention the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and toward the negative terminal of the battery. Electrons would actually move through the wires in the opposite direction.
I believe it is because of weight if Timmy is larger and bigger than Maria that would mean he would stop slower just because of his bodyweight pushing on the back of the skateboard while Maria is all those skinny and she doesn’t have as much weight as she can go farther
Answer:
The moment of inertia is 
Explanation:
From the question we are told that
The frequency is 
The mass of the pendulum is 
The location of the pivot from the center is 
Generally the period of the simple harmonic motion is mathematically represented as

Where I is the moment of inertia about the pivot point , so making I the subject of the formula it
=> ![I = [ \frac{T}{2 \pi } ]^2 * m* g * d](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7BT%7D%7B2%20%5Cpi%20%7D%20%5D%5E2%20%2A%20%20m%2A%20%20g%20%2A%20d)
But the period of this simple harmonic motion can also be represented mathematically as

substituting values


So
![I = [ \frac{2.174}{2 * 3.142 } ]^2 * 2.40* 9.8 * 0.380](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7B2.174%7D%7B2%20%2A%203.142%20%7D%20%5D%5E2%20%2A%20%20%202.40%2A%20%209.8%20%2A%200.380)

Answer:
D. The tea loses heat to the spoon causing the spoon to become warmer
Explanation:
When the silver spoon at a lower temperature than the tea, is added to the tea, it makes thermal contact. Hence, the heat transfer starts between the two until the equilibrium is reached. We know that the heat transfer takes place from the body with a higher temperature to a body with a lower temperature. As a result, the body with higher temperature loses heat and its temperature lowers down. While the body with a lower temperature gains heat and its temperature rises.
Therefore, the correct option is:
<u>D. The tea loses heat to the spoon causing the spoon to become warmer</u>