1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir2022 [97]
3 years ago
12

How long could you survive without electricity? What parts of your life would be affected by loss of electricity?

Physics
1 answer:
Law Incorporation [45]3 years ago
6 0

Answer:

Depends on the person, if you are hooked to your phone which most people are these days, you might go a little crazy. But think cavemen or anybody long ago, they survived without electricity. People in Africa bathe in the lake or any water nearby, they also walk for miles just to get drinking water. So yes, if you really tried you could go without electricity for possibly your whole life. It sucks if you have homework though because you don't have Brainly :)

Explanation:

You might be interested in
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
100 °C is a greater temperature than which of the following?
ohaa [14]
When somebody hands you a Celsius°, it's easy to find the equivalent Fahrenheit°.

Fahrenheit° = (1.8 · Celsius°) + 32° .

So 100°C works out to 212°F.  

It's also easy to find the equivalent Kelvin.  Just add 273.15 to the Celsius.

So now you can see that  100°C  is equal to  A  and  D,
and it's less than  B .

The only one it's greater than is  C .
6 0
2 years ago
Which is the mode of the following data?<br>120, 125, 130, 125, 135​
Aleks [24]

The mode in this case would be 125 because it occurs the most in the sequence of numbers.

8 0
3 years ago
Read 2 more answers
A 75.0 kg diver falls from rest into a swimming pool from a height of 5.10 m. It takes 1.34 s for the diver to stop after enteri
vichka [17]

Answer:

559.5 N

Explanation:

Applying,

v² = u²+2gs............. Equation 1

Where v = final velocity,

From the question,

Given: s = 5.10 m, u = 0 m/s ( from rest)

Constant: 9.8 m/s²

Therefore,

v² = 0²+2×9.8×5.1

v² = 99.96

v = √(99.96)

v = 9.99 m/s

As the diver eneters the water,

u = 9.99 m/s, v = 0 m/s

Given: t = 1.34 s

Apply

a = (v-u)/t

a = 9.99/1.34

a = -7.46 m/s²

F = ma.............. Equation 2

Where F = force, m = mass

Given: m = 75 kg, a = -7.46 m/s²,

F = 75(-7.46)

F = -559.5 N

Hence the average force exerted on the diver is 559.5 N

7 0
2 years ago
CAN YOU SUBSCRIBE? PLEASE...
nadezda [96]

Answer:

just wait I'll subscribe yours

<h2>hope it helps you have a good day keep smiling be happy stay safe</h2>

4 0
3 years ago
Other questions:
  • A uniform brick of length 21 m is placed over
    13·1 answer
  • What kind of motion for a star does not produce a Doppler effect? Explain.
    11·1 answer
  • Question 4 (20 points)
    8·2 answers
  • One simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching to
    13·1 answer
  • A driver must always stop within 50 ft but not less than ____________ ft from the nearest rail when the signal is flashing and t
    11·2 answers
  • An engineer in a locomotive sees a car stuck on the track at a railroad crossing in front of the train. When the engineer first
    9·1 answer
  • The speed of light changes as it passes from one medium to the next. In which image does the speed of light change the most?
    8·2 answers
  • A factory has 1200 workers of which 720 are male and the rast are female what percent of workers are female​
    12·1 answer
  • Can someone awnser this
    14·1 answer
  • Explain how do single fixed and single movable Pulley make our work easier ​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!