Answer:
See below
Explanation:
You have to heat the calorimeter to 100 C from 20 C
this will take .20 kg * 390 j /kg-C * 80 C = <u>6240 j</u>
You have to heat the mass of water to boiling point (100 C ) from 20C
this will take
.50 kg * 4182 j/kg-C * 80 = <u>167,280 j </u>
AND you have to add enough heat to boil off .03 kg of water:
.03 kg * (2260000 j/kg-C ) =<u> 67,800 j</u>
<u />
Power = joules / sec = (6240 + 167280 + 67800) / 274.8 =<u> 878 watts </u>
<u />
<u>Your answer may differ just a bit for slightly different or rounded values of specific heat or heat of fusion for water .....</u>
Answer:
m = 20,000 kg
Explanation:
Force, 
Acceleration of the shark, 
It is required to find the mass of the shark. Let m is the mass. Using second law of motion to find it as follows :
F = ma
Putting the value of F and a to find m

So, the shark's mass is 20,000 kg.
Answer:
296 N
Explanation:
Draw a free body diagram. The box has two forces on it: tension up and weight down.
Apply Newton's second law:
∑F = ma
T − mg = ma
T = m (g + a)
Given m = 196 N / 9.8 m/s² = 20 kg, and a = +5 m/s²:
T = (20 kg) (9.8 m/s² + 5 m/s²)
T = 296 N
Answer:
velocity during second d = 20.0 mi/h
Explanation:
Total distance travelled is 2d, with an average velocity of 30.0 mi/h you can express the time travelled in terms of d:
distance = velocity * time
time = distance / velocity
time = 2d/30.0
The time needed for the first d at 60.0 is:
time = d/60.0
The time in the second d you can get it by substracting both times (total time - time for the first d)
second d time = 2d/30.0 - d/60.0
= 4d/60.0 - d/60.0
= 3d/60.0
and with the time (3d/60.0) and the distance travelled (d) you can get the velocity:
velocity = distance / time
velocity = d / (3d/60.0)
= 60.0/3 = 20.0 mi/h