Answer:
H = 6.93 m
Explanation:
given data
velocity v = 35 m/s
horizontal component Vx = 33 m/s
solution
we get here maximum height so first we get vertical component here that is express as
Vy =
.........................1
put here value
Vy =
Vy = 11.66 m/s
and
now we get height
H =
.............................2
put here value
H = 
H = 6.93 m
Answer:
27.44 J
Explanation:
We can find the energy at the top of the slide by using the potential energy equation:
At the top of the slide, the swimmer has 0 kinetic energy and maximum potential energy.
The swimmer's mass is given as 7.00 kg.
The acceleration due to gravity is 9.8 m/s².
The (vertical) height of the water slide is 0.40 m.
Substitute these values into the potential energy equation:
- PE = (7.00)(9.8)(0.40)
- PE = 27.44
Since there is 0 kinetic energy at the top of the slide, the total energy present is the swimmer's potential energy.
Therefore, the answer is 27.44 J of energy when the swimmer is at the top of the slide.
At 10 m/s, it will take
(2 m)/(10 m/s) =
0.2 sto bridge the gap.
_____
However, it will take an additional 0.514 seconds (0.714 s total) for the policeman to land on the building below. The answer depends on the meaning of the question.