1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
2 years ago
12

A car drives at a constant speed of 45km in 20mn. The speed of the car is..?​

Physics
1 answer:
GarryVolchara [31]2 years ago
5 0

Answer:

83.8851 mi/h              

You might be interested in
A vector quantity must include both magnitude and direction. Which measurement is a vector quantity? A) the rain accumulation at
bogdanovich [222]

Answer:

B)The motion of water in an ocean current

Explanation:

With respect to measurements, a vector has both a magnitude and a direction. The first three examples (maximum height of a hill, air temperature, and rain accumulation) are magnitudes only. The fourth example (motion of water in an ocean current) is a vector, because it has a magnitude (speed) and a direction (with the current).

4 0
3 years ago
How loudness of a sound wave depends on the intensity of the sound wave?
Anestetic [448]
Loudness of a sound wave is directly proportional to the intensity of the sound wave. In other words, when one increases, other also increases and vice-versa

Hope this helps!
3 0
3 years ago
Imagine a raindrop starting from rest in a cloud 2 km in the air. If it fell with no air friction at all, it would accelerate to
LenKa [72]

Answer:

2) 433 mph

Explanation:

The final velocity of the raindrop as it reaches the ground can be found by using the equation for a uniformly accelerated motion:

v^2 = u^2 + 2ad

where

v is the final velocity

u = 0 is the initial velocity (the raindrop starts from rest)

a = g = 9.8 m/s^2 is the acceleration due to gravity

d = 2 km = 2000 m is the distance covered

Solving for v,

v=\sqrt{u^2 +2gd}=\sqrt{0^2+2(9.8 m/s^2)(2000)}=198 m/s

And keeping in mind that

1 mile = 1609 metres

1 hour = 3600 s

The speed converted into miles per hour is

v=198 \frac{m}{s}\cdot \frac{3600 s/h}{1609 m/mi}=433 mph

5 0
3 years ago
Sheila weighs 60 kg and is riding a bike. Her momentum on the bike is 340 kg • m/s. The bike hits a rock, which stops it complet
Vikki [24]

Answer:

v₂ = 5.7 m/s

Explanation:

We will apply the law of conservation of momentum here:

Total\ Initial\ Momentum = m_{1}v_{1} + m_{2}v_{2}\\

where,

Total Initial Momentum = 340 kg.m/s

m₁ = mass of bike

v₁ = final speed of bike = 0 m/s

m₂ = mass of Sheila = 60 kg

v₂ = final speed of Sheila = ?

Therefore,

340\ kg.m/s = m_{1}(0\ m/s) + (60\ kg)v_{2}\\v_{2} = \frac{340\ kg.m/s}{60\ kg}\\\\

<u>v₂ = 5.7 m/s </u>

6 0
3 years ago
(a) A load of coal is dropped (straight down) from a bunker into a railroad hopper car of inertia 3.0 × 104 kg coasting at 0.50
Firlakuza [10]

Answer:

a) m=20000Kg

b) v=0.214m/s

Explanation:

We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.

For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is, p=m_Av_A=m_Bv_B=m_Cv_C, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as m_h, and the mass of the first and second coals as m_1 and m_2 respectively

We start with the transition between parts A and B, so we have:

m_Av_A=m_Bv_B

Which means

m_hv_A=(m_h+m_1)v_B

And since we want the mass of the first coal thrown (m_1) we do:

m_hv_A=m_hv_B+m_1v_B

m_hv_A-m_hv_B=m_1v_B

m_1=\frac{m_hv_A-m_hv_B}{v_B}=\frac{m_h(v_A-v_B)}{v_B}

Substituting values we obtain

m_1=\frac{(3\times10^4Kg)(0.5m/s-0.3m/s)}{0.3m/s}=20000Kg=2\times10^4Kg

For the transition between parts B and C, we can write:

m_Bv_B=m_Cv_C

Which means

(m_h+m_1)v_B=(m_h+m_1+m_2)v_C

Since we want the new final speed of the car (v_C) we do:

v_C=\frac{(m_h+m_1)v_B}{(m_h+m_1+m_2)}

Substituting values we obtain

v_C=\frac{(3\times10^4Kg+2\times10^4Kg)(0.3m/s)}{(3\times10^4Kg+2\times10^4Kg+2\times10^4Kg)}=0.214m/s

5 0
3 years ago
Other questions:
  • Héłp mê ................???.?
    8·2 answers
  • Which type of star is smaller neutron or dwarf
    9·1 answer
  • Overcoming an object inertia always requires an
    7·1 answer
  • A different group of students decided to do this experiment by
    13·1 answer
  • The driver of a car traveling at 23.1 m/s applies the brakes and undergoes a constant
    13·1 answer
  • When 560,000 is written in scientific notation, the power of 10 is
    14·2 answers
  • Which of these is a characteristic of the Milky Way galaxy
    14·1 answer
  • with what force will the a car hit a tree if the car has a mass of 3,000 kg and a acceleration of 2m/s^2​
    5·1 answer
  • A 6 kilogram block in outer space is moving at -100 m/s (to the left). It suddenly experiences three forces as shown below (in t
    11·1 answer
  • Base your answer(s) to the following question(s) on the information and diagram
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!