Answer:
16.9g of H₂O can be formed
Explanation:
Based on the chemical reaction, 2 moles of H₂ react per mole of O₂. To anser this question we must find limiting reactant converting the mass and volume of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
8.76g * (1mol / 2.016g) = 4.345 moles
<em>Moles O₂:</em>
PV = nRT
PV/RT = n
P = 1atm at STP
V = 10.5L
R = 0.082atmL/molK
T = 273.15K at STP
n = 1atm*10.5L / 0.082atmL/molK*273.15K
n = 0.469 moles of oxygen
For a complete reaction of 4.345 moles moles of hydrogen are required:
4.345 moles H2 * (1mol O2 / 2mol H2) = 2.173 moles of O2 are required. As there are just 0.469 moles, Oxygen is limiting reactant
Now, 1 mole of O2 produce 2 moles of H2O. 0.469 moles will produce:
0.469 moles O₂ * (2 moles H₂O / 1mol O₂) = 0.938 moles H₂O.
The mass is -Molar mas H₂O = 18.01g/mol-:
0.938 moles * (18.01g/mol) =
<h3>16.9g of H₂O can be formed</h3>
<span>All metals have similar properties BUT, there can be wide variations in melting point, boiling point, density, electrical conductivity and physical strength.<span>To explain the physical properties of metals like iron or sodium we need a more sophisticated picture than a simple particle model of atoms all lined up in close packed rows and layers, though this picture is correctly described as another example of a giant lattice held together by metallic bonding.</span><span>A giant metallic lattice – the <span>crystal lattice of metals consists of ions (NOT atoms) </span>surrounded by a 'sea of electrons' that form the giant lattice (2D diagram above right).</span><span>The outer electrons (–) from the original metal atoms are free to move around between the positive metal ions formed (+).</span><span>These 'free' or 'delocalised' electrons from the outer shell of the metal atoms are the 'electronic glue' holding the particles together.</span><span>There is a strong electrical force of attraction between these <span>free electrons </span>(mobile electrons or 'sea' of delocalised electrons)<span> (–)</span> and the 'immobile' positive metal ions (+) that form the giant lattice and this is the metallic bond. The attractive force acts in all directions.</span><span>Metallic bonding is not directional like covalent bonding, it is like ionic bonding in the sense that the force of attraction between the positive metal ions and the mobile electrons acts in every direction about the fixed (immobile) metal ions of the metal crystal lattice, but in ionic lattices none of the ions are mobile. a big difference between a metal bond and an ionic bond.</span><span>Metals can become weakened when repeatedly stressed and strained.<span><span>This can lead to faults developing in the metal structure called 'metal fatigue' or 'stress fractures'.</span><span>If the metal fatigue is significant it can lead to the collapse of a metal structure.</span></span></span></span>
Nope, it's a physical change. When ice melts it changes into liquid water, it's still water. Changes in which no new substances are formed are physical changes, hence this is a physical change.
6.6 ×
J = 6.2 ×
British thermal units
First of all, we should know that 1 British thermal unit = 1055 Joules.
From question, heat = 6.6 ×
J
1 BTU = 1055 J
6.6 ×
J =
× 6.6 ×
British thermal units
= 6.2 ×
British thermal units
1000 Joules = 1 kilojoule
A kilojoule is a unit of measure of energy, in the equal way that kilometers degree distance. meals energy used to be measured in energy and some international locations still use those gadgets.
The power we get from foods and drinks is measured in kilojoules. that is the metric time period for calorie. Kilojoules and energy constitute the equal aspect. One calorie is ready four kilojoules.
Calorie a unit for measuring warmth same to the quantity of warmth required to elevate the temperature of one gram of water one diploma Celsius.
Learn more about kilojoules here :- brainly.com/question/490326
#SPJ4
The element "X" is "O" (oxygen).
<h3>Calculation:</h3>
Given,
Chemical formula = Na₂CX₃
Formula mass = 106 amu
Molar mass of Na = 23 amu
Molar mass of C = 12 amu
To find,
Element X =?
We will equate the equation as follows,
2(23) + 12 + 3(y) = 106
46 + 12 + 3y =106
58 + 3y = 106
3y = 106 - 58
3y = 48
y = 48/3
y = 16
We know that Oxygen has molecular mass of 16. Therefore the element "X" is "O".
Learn more about molar mass here:
brainly.com/question/22997914
#SPJ4