Answer:
Explanation:
Use one of your experimentally determined values of k, the activation energy you determined, and the Arrhenius equation to calculate the value of the rate constant at 25 °C. Alternatively, you can simply extrapolate the straight line plot of ln(k) vs. 1/T in your notebook to 1/298 , read off the value of ln(k), and determine the value of k. Please put your answer in scientific notation. slope=-12070, Ea=100kJ/mol, k= 0.000717(45C), 0.00284(55C), 0.00492(65C), 0.0165(75C), 0.0396(85C)
Explanation;
According to Arrhenius equation:
i.e. ln(k2/k1) = -Ea/R (1/T2 - 1/T1)
Where, k1 = 0.000717, T1 = 45 oC = (45+273) K = 318 K
T2 = 25 oC = (25 + 273) K = 298 K
i.e. ln(k2/0.000717) = -12070 (1/298 - 1/318)
i.e. ln(k2/0.000717) = -2.54738
i.e. k2/0.000717 = 
= 0.078286
Therefore, the required constant (k2) = 0.078286 * 0.000717 = 
I believe it’s C ) chemical changes since chemical changes are usually permanent
Answer:
p1/T1=p2/T2
760mmHg/212°F=731mmHg/T2
T2= 203.91°F
760mmHg/100°C=731mmHg/T2
T2= 96.18°C
Explanation:
You'd have to choose in which units you want to express the temperature.
Ok yeah a ha yeah wow it is 13.543 g/× compare that with e 13.5