Answer:
S(metal) = 0.66J/g°C
Explanation:
We can find specific heat of a material, S, using the equation:
q = m*S*ΔT
<em>Where q is change in heat, m is the mass of the substance, S specific heat and ΔT change in temperature.</em>
The heat given by the metal is equal to the heat that water absorbs, that is:
m(Metal)*S(metal)*ΔT(Metal) = m(Water)*S(water)*ΔT(water)
<em>Where:</em>
m(Metal) = 76.0g
S(metal) = ?
ΔT(Metal) = 96.0°C-31.0°C = 65.0°C
m(Water) = 120.0g
S(water) = 4.184J/g°C
ΔT(water) = 31.0°C-24.5°C = 6.5°C
Replacing:
76.0g*S(metal)*65.0°C = 120.0g*4.184J/g°C*6.5°C
S(metal) = 0.66J/g°C
<em />
The law of conservation applies because the energy is not been created or destroyed. The energy that the metal gives is absorbed by the water.
Answer:
e−(Ea/RT): the fraction of the molecules present in a gas which have energies equal to or in excess of activation energy at a particular temperature
Hydrogen gas is produced when dilute hydrochloric acid is added to a reactive metal.
Balanced molecular equation of sodim metal with hydrochloric acid:
2Na(s) + 2HCl(aq) → 2NaCl(aq) + H₂(g).
Ionic equation: 2Na(s) + 2H⁺(aq) + 2Cl⁻(aq) → 2Na⁺ + 2Cl⁻(aq) + H₂(g).
Net ionic equation: 2Na(s) + 2H⁺(aq) → 2Na⁺(aq) + H₂(g).
Sodium is oxidized from oxidation number 0 (Na) to oxidation number +1, hydrogen is reduced from oxidation number +1 to oxidation number 0 (hydrogen gas H₂).
Another example:
Balanced chemical equation: Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g)
Word equation: zinc + hydrochloric acid → zinc chloride + hydrogen gas
More about hydrogen gas:brainly.com/question/24433860
#SPJ4
Answer:
6,613 M
Explanation:
Dilution is the process of reducing the concentration of a solute in solution, mixing initial solution with more solvent.
The concentration of Solution B is:
23,881 M × = 9,552 M
Because the initial eight parts are diluted to 12+8 parts.
Thus, concentration of solution C is:
9,552 M × = 6,613 M
I hope it helps!
If we are talking about moles then the answer to that is 0.22