Answer:

Explanation:
Hello,
In this case, we use the Avogadro's number to compute the molecules of C2F4 whose molar mass is 100 g/mol contained in a 485-kg sample as shown below:

Best regards,
Answer:
Hey do you know if "horsleyjaydyn" is a girl you commented once she was a guy so
Explanation:
Answer:
34.7mL
Explanation:
First we have to convert our grams of Zinc to moles of zinc so we can relate that number to our chemical equation.
So: 6.25g Zn x (1 mol / 65.39 g) = 0.0956 mol Zn
All that was done above was multiplying the grams of zinc by the reciprocal of zincs molar mass so our units would cancel and leave us with moles of zinc.
So now we need to go to HCl!
To do that we multiply by the molar coefficients in the chemical equation:

This leaves us with 2(0.0956) = 0.1912 mol HCl
Now we use the relationship M= moles / volume , to calculate our volume
Rearranging we get that V = moles / M
Now we plug in: V = 0.1912 mol HCl / 5.50 M HCl
V= 0.0347 L
To change this to milliliters we multiply by 1000 so:
34.7 mL
Ionization energy is the energy required to remove the
outermost electron from one mole of gaseous atom to produce 1 mole of gaseous
in to produce a charge of 1. The greater the ionization energy, the greater is
the chance f the electron to be removed from the nucleus. In this casse, Radium
has the largest ionization energy.