Decomposition reactions are said to be those reactions in which a reactants breakdown into two or more products. The general reaction for decomposition reactions is as follow,
ABC → A + B + C
Specific Examples are as,
Water → Hydrogen + Oxygen
2 H₂O → 2 H₂ + O₂
Calcium carbonate → Calcium oxide + Carbon dioxide
CaCO₃ → CaO + CO₂
While, Synthetic reactions are said to be those reactions in which two or more reactants combine to form two or more products. The general reaction for synthetic reactions is as follow,
A + B + C → ABC
Specific Examples are as,
Iron + Oxygen → Iron Oxide
2 Fe + 3 O₂ → 2 Fe₂O₃
Sodium + Chlorine → Sodium chloride
2 Na + Cl₂ → 2 NaCl
Sulfur + Oxygen → Sulfur dioxide
S + O₂ → SO₂
Potassium + Chlorine → Potassium chloride
2 K + Cl₂ → 2 KCl
Distance is the total length of an object's path. Displacement is the overall change in position, ie. how far an object is from its initial position.
The court is 30 m long, so a path going back and forth once is 60 m long. Going along this path 6 times totals 360 m.
The end point is the same as the starting point, so the displacement is 0 m.
Work done = Force X Distance
3 430 000J = Force X 14m
Force = 3 430 000J / 14m
= 245 000 N
Hope this helps!
Answer:
<em>The total potential (magnitude only) is 11045.45 V</em>
Explanation:
<u>Electric Potential
</u>
The total electric potential at location A is the sum of all four individual potentials produced by the charges, including the sign since the potential is a scalar magnitude that can be computed by

Where k is the Coulomb's constant, q is the charge, and r is the distance from the charge. Let's find the potential of the rightmost charge:

The potential of the leftmost charge is exactly the same as the above because the charges and distances are identical

The potential of the topmost charge is almost equal to the above computed, is only different in the sign:

The bottom charge has double distance and the same charge, thus the potential's magnitude is half the others':

The total electric potential in A is


The total potential (magnitude only) is 11045.45 V
Displacement/distance metres
Time seconds
Force Newtons
Energy Joules
Voltage Volts
Current intensity Amperes
Resistance Ohms
Light intensity Candella
Pressure Pascals
Charge Coulombs