Answer:
30 Watts
Explanation:
Power = Work/Time
Work = Force*Distance
Power = Force * Distance / Time
Power = 15 N * 20 meters / 10 sec
Power = 30 Watts
Perhaps D. if it is the lowebsr possible frequency then it would most likely be the last. I may not be 100 percent right, but that's just an educated guess.
Answer:
v_{4}= 80.92[m/s] (Heading south)
Explanation:
In order to calculate this problem, we must use the linear moment conservation principle, which tells us that the linear moment is conserved before and after the collision. In this way, we can propose an equation for the solution of the unknown.
ΣPbefore = ΣPafter
where:
P = linear momentum [kg*m/s]
Let's take the southward movement as negative and the northward movement as positive.

where:
m₁ = mass of car 1 = 14650 [kg]
v₁ = velocity of car 1 = 18 [m/s]
m₂ = mass of car 2 = 3825 [kg]
v₂ = velocity of car 2 = 11 [m/s]
v₃ = velocity of car 1 after the collison = 6 [m/s]
v₄ = velocity of car 2 after the collision [m/s]
![-(14650*18)+(3825*11)=(14650*6)-(3825*v_{4})\\v_{4}=80.92[m/s]](https://tex.z-dn.net/?f=-%2814650%2A18%29%2B%283825%2A11%29%3D%2814650%2A6%29-%283825%2Av_%7B4%7D%29%5C%5Cv_%7B4%7D%3D80.92%5Bm%2Fs%5D)
Fx = Fcos21.9
Fx = 2.3N * cos21.9
Fx = 2.13N
Answer:
about 186,000 miles per second
Explanation:
so your closest bet is probably 175 miles per second