This would be gas, due to it not essentially having a definite volume.
Answer:
Explanation:
STEP 1
<u>Given</u>
Radius of cylinder = r = 25cm, 2.5m
mass = 27kg
cylinder is mounted so as to rotate freely about a horizontal axis that is parallel to and 60cm to the central logitudinal axis of the cylinder
height = 0.6m
<u>part 1</u>
The cylinder is mounted so as to rotate freely about a horizontal axis tha is paralle to 60cm from the central longitudinal axis of then cylinder. The rotational inertia of the cylinder about the axis of rotation is given by
<em>I = Icm + mh²</em>
<em>∴ I = 1/2mr² + mh² = 1/2x27x (0.5)² + 20 x (0.6)²</em>
<em>I=13.09kg.m²</em>
where
<em>I</em>cm is the rotational inertia of the cylinder about its central axis
m is the mass of the cylinder
h is the distance between the axis of the rotation and the central axis of the cylinder
r is the radius of the cylinder
<em> </em><em> I=13.09kg.m²</em>
<em>part2</em>
<em>from the conservation of the total mechanical energy of the meter stick, the change in gravitational potential energyof the meter stick plus the change in kinetic energy must be zero</em>
<em>Δk + Δu = 0</em>
<em>1/2 </em>I(w²-w²) = Ui-Uf
1/2 x 13.09w² = mgh
∴w=√20 x 9.8 x 0.6/(1/2 x 13.09) =117.6/6.5
w=18.09rad/s
That is True because if it resists it means to not do it and if it is motion, that means that it is resisting movement and that is what inertia is.
The scientific definition for inertia is: "a tendency to do nothing or to remain unchanged"
Glad to help. :)
<span>They are used to measure and map effluent and pollution discharges from factories and sewerage plants, and the movement of sand around harbours, rivers and bays. Radioactive materials used for such purposes have short half-lives and decay to background levels within days.</span>