I know
the answer do you want me to help you?
Answer:
6 light years = 57 million km
Explanation:
Given;
A light year = 9.5 million km
To calculate how far is 6 light years;
6 light years = 6 × 1 light year = 6 × 9.5 million km
6 light years = 57 million km
Answer:
1.635×10^-3m
Explanation:
Young modulus is the ratio of the tensile stress of a material to its tensile strain.
Young modulus = Tensile stress/tensile strain
Tensile stress = Force/Area
Given force = 130N
Area = Πr² = Π×(1.55×10^-3)²
Area = 4.87×10^-6m²
Tensile stress = 130/4.87×10^-6 = 8.39×10^7N/m²
Tensile strain = extension/original length
Tensile strain = e/3.9
Substituting in the young modulus formula given young modulus to be 2×10¹¹N/m²
2×10¹¹N/m² = 8.39×10^7/{e/3.9)}
2×10¹¹ = (8.39×10^7×3.9)/e
2×10¹¹e = 3.27×10^8
e = 3.27×10^8/2×10¹¹
e = 1.635×10^-3m
The stretch of the steel wire will be
1.635×10^-3m
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .