It makes no sense how you typed this problem out.
Explanation:
Let east direction is negative and west direction is positive. The acceleration of an object is given by :

Where
v is the final speed
u is the initial speed
t is the time taken
As the car decelerates, the final speed of the car is less as compared to the initial speed. As a result, its acceleration is negative. It means the car travels eastward and slows down. Hence, this is the required solution.
Answer:
The magnitude of the tension in he string is equal to the magnitude of the weight of the object.
Explanation:
According to the Newton's 1st law, An object will remain at rest or in uniform motion in a straight line unless acted upon by an unbalanced force.
In here, the elevator is moving with a constant speed. So the object must have the equal constant speed. Which means, it has a uniform motion. According to Newton's 1st law, the total unbalanced force on the object must be zero . As we know, there are only two forces are on the object and they are,
The tension in string(T) , The weight of the object(W) .
∴ F = 0
T - W = 0
So to balanced those forces, the magnitude of the tension in the string must be equal to the magnitude of the weight of the object.
Answer:
least distance= 13mm
ratio of the lattice = 1 : 0.71 : 0.58
Explanation:
given λ₁ = 650nm = 650×10⁻⁹m, λ₂ = 500nm = 500×10⁻⁹m
Answer:
Electromagnetic waves are created by a charged particle that generates an electric field. The electric field creates a magnetic field. As the charged particle moves, the electric field and magnetic field keep changing, which causes the wave to move.
Explanation:
<em> I just answered the question and this is the sample response </em>