Explanation:
frequency =speed/wavelength
=5/0.5=10Hz
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>
Given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
<h3>What is Current?</h3>
Current is simply the rate of flow of charged particles i.e electrons caused by EMF or voltage.
If a charge passes through the cross-section of a conductor in a given time, the current I is expressed as;
I = Q/t
Where Q is the charge and t is time elapsed.
Given the data in the question;
- Time elapsed t = 1hr = 3600s
- Current I = 350mA = 0.35A
We substitute our given values into the expression above to determine the charge.
I = Q/t
Q = I × t
Q = 0.35A × 3600s
Q = 1260C
Therefore, given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
Learn more about current here: brainly.com/question/3192435
#SPJ1
Answer:
the wagon should be used as frame of reference if an observer said the child was not moving.
Explanation:
The state of motion of a body depends upon the frame of reference. It is the set of co-ordinates according to which the motion is analyzed. If a child is riding in a wagon, then he will be considered in motion to a person standing outside the wagon. Hence, if we take a frame of reference outside the wagon then the child must be in motion with respect to the observer. On the other hand if the observer is inside the wagon, then the child must be in rest with respect to the observer. Hence, if we take the wagon to be the frame of reference, then the child will be at rest with respect to the observer.
<u>Therefore, the wagon should be used as frame of reference if an observer said the child was not moving.</u>
The coefficient of static friction between the puck and the surface.
In fact, that coefficient describes exactly how "hard" it is to cause the puck to start moving, if it starts from an idle condition.