It would be 7 M 4 m x 2 m equals 8 M - 1 =7
The resistance at operating temperature is R = V/I = 2.9 V / 0.23A = 12.61 ohmsT from R – R0 = Roalpha (T – T0), we find that:T = T0 + 1/alpha (R/R0 -1) = 20 degrees Celsius + (1/ 4.3 x 10^-3/K) (12.61 ohms/ 1.1 ohms – 1)T = 2453.40 degrees Celsius
Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.
Answer:
I believe <u>kinetic / potential</u>
Explanation:
Answer:
A Fan Cart Initially Has An Acceleration Of 1.6m/s/s When It's Fan Is Directed Straight Backwards. If You Rotate The Fan By 45o, By What Percentage Do You Expect The Fan Cart's Thrust To Decrease? (Answer Should Be In Units Of 96)
a. 45%
b. 29%
c. 71%
d. 50%
The correct answer is d.
d. 50%
Explanation:
Fan cart acceleration = 1.6 m/s²
Thrust = 0.25×π×D²×ρ×v×Δv
where Δv = acceleration component and all factors remaining cconstant, when the fan is rotated by 45 ° the diameter changes to D₂ = sin 45 ×D
or 0.707×D. The thrust becomes 0.25×π×(0.707×D)²×ρ×v×Δv
=0.25×π×0.5×D²×ρ×v×Δv or 0.5(0.25×π×D²×ρ×v×Δv)
That is the thrust reduces by 50 %