The number of atoms of each element in the protein
That's a lot of conversions...
107*7 = 749km in one week
749/1.6 = 468.125 miles
468.125/39 = <span>12.0032051282 gallons of fuel needed
</span>1 gallon = 4.54609 litres
1.1(Cost per litre)*4.54609(Number of litres per gallon)*12.0032051282(Number of gallons needed) = <span>60.0244158814 euros cost per week
</span>60.0244158814 * 1.26 = <span>75.6307640105 dollar cost per week
</span>$75.63
The simplest way to use the periodic table to identify<span> an </span>element<span> is by looking for the </span>element's<span> name or elemental symbol. The periodic table can be used to </span>identify <span>an </span>element<span> by looking for the </span>element's<span> atomic </span>number<span>. The atomic </span>number of<span> an </span>element<span> is the </span>number of<span> protons found within the atoms of that </span>element<span>.</span>
As per Ideal gas equation, molar mass of the gas is 5.032 g/mo
We’ll begin by calculating the number of mole of the gas. This can be obtained as follow:
Volume (V) = 1.6 L
Temperature (T) = 287 K
Pressure (P) = 0.92 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Number of mole (n) =?
According to Ideal gas equation , PV = nRT
0.92 × 1.6 = n × 0.0821 × 287
1.472 = n × 23.5627
Divide by 23.5627
n = 1.176 / 23.5627
n = 0.0624 mole
Finally, we shall determine the molar mass of the gas. This can be obtained as follow:
Mass of gas = 0.314 g
Number of mole = 0.0624 mole
Mole = 
0.0624 = 
Cross multiply
0.0624 × molar mass of gas = 0.314
Divide by 0.0624
Molar mass of gas = 
Molar mass of gas = 5.032 g/mo
Therefore the Molar mass of gas is 5.032 g/mo
Learn more about Ideal gas equation here:
brainly.com/question/3637553
#SPJ1