We use the MO diagram for a homonuclear diatomic species (since C and N are neighbours, we treat them as the "same").
The first two electrons contribute to bonding. The next two are anti-bonding.
The next six contribute to bonding, and the following six are anti-bonding.
So, if we start with CN+, which has 4+5-1 (8) valence electrons, we note that the first two electrons contribute to bonding, while the next two cancel this out; the next four contribute to bonding, so the bond order is 4/2 = 2.
If we add one more electron to get CN, there are now 5 bonding electrons, giving bond order 5/2=2.5.
Adding one more to give CN- would give the bond order 6/2 = 3. (If we added more electrons, each one would lower the bond order.)
Given a series of molecules with identical skeletal structures, the one with the highest bond order has the highest bond energy:
CN+ < CN < CN-
Lewis structures will verify that CN- has a triple bond, but they do not work particularly well for CN+ and CN.
learn more about bond orders at
brainly.com/question/9713842
#SPJ1
Answer:
- <u><em>It is positive when the bonds of the product store more energy than those of the reactants.</em></u>
Explanation:
The <em>standard enthalpy of formation</em>, <em>ΔHf</em>, is defined as the energy required to form 1 mole of a substance from its contituent elements under standard conditions of pressure and temperature.
Then, per defintion, when the elements are already at their standard states, there is not energy involved to form them from that very state; this is, the standard enthalpy of formation of the elements in their standard states is zero.
It is not zero for the compounds in its standard state, because energy should be released or absorbed to form the compounds from their consituent elements. Thus, the first choice is false.
When the bonds of the products store more energy than the those of the reactants, the difference is:
- ΔHf = ΔHf products - ΔHf reactants > 0, meaning that ΔHf is positive. Hence, the second statement is true.
Third is false because forming the compounds may require to use (absorb) or release (produce) energy, which means that ΔHf could be positive or negative.
Fourth statement is false, because the standard state of many elements is not liquid. For example, it is required to supply energy to iron to make it liquid. Thus, the enthalpy of formation of iron in liquid state is not zero.
Answer:
The role that chlorine atoms have in increasing the depeltion rate ozone is that Cl acts as a catalyst.
Explanation:
- From the two steps of the reaction:
- O₃ + Cl· → ClO· + O₂
- ClO· + O → Cl· + O₂
- The overall reaction is: O₃ + O → 2O₂
- It is clear that ClO· is an intermediate that has been produced within the first step and has been consumed in the second step.
- Also, Cl· is considered as a catalyst in this reaction that it has been consumed in the first step and has been produced in the second step, which means that it does not get up in the reaction, that is the main characteristic of the catalyst.
- The catalyst usually increases the rate of the reaction by lowering its energy of activation (The minimum energy that is required to initiate the reaction) by proceeding the reaction in an alternative pathway <em>(changing the reaction mechanism)</em>.
- Hence, the role affecting the reaction rate that chlorine atoms have in increasing the depletion rate of ozone that it acts as a catalyst and does not get used up in the reaction.
Answer:
10.67 moles is the answers.hope it helped