Answer:
The reaction is a double displacement reaction
Explanation:
Let us consider the reaction equation of the reaction between ammonium oxalate and lithium acetate.
(NH4)2C2O4(aq) +2 CH3COOLi(aq) -------> 2NH4CH3CO2(aq) + Li2C2O4(s)
This is a displacement reaction. A double displacement reaction is a type of reaction in which two reactants exchange their ions to form two new compounds. Double displacement reactions usually lead to the formation of a solid product which is also called a precipitate.
The general form of a Double displacement reaction is of the format:
AB + CD → AD + CB
Where A,B,C and D represents different ions respectively.
A double displacement reaction can also be referred to as salt metathesis reaction, double replacement reaction, exchange reaction, or a double decomposition reaction, although the latter term is more strictly used when one or more of the reactants does not dissolve in the solvent.
To answer this problem, we use Hess' Law to calculate the overall enthalpy of the reactions. The goal is to add all the reactions such that the final reaction is C<span>5H12 (g) + 8O2 (g) → 5CO2 (g) + 6H2O (l) through cancellation adn multiplication. The first equation is multiplied by 5, the second one is multiplied by 6 and the third one is reversed. The final answer is -3538 J or -3.54 x10^3 kJ.</span>
Answer:
The collision theory states that a chemical reaction can only occur between particles when they collide (hit each other).
<em>h</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em><em>~</em>
There are 1,000 milligrams (mg) in one gram:
In 10 grams, there are 10 x 1,000 = 10,000 milligrams. This is a lethal dose of caffeine.
There are 4.05 mg/oz (milligrams/ounce) of caffeine in the soda.
In a 12 ounce can, there are 4.05 x 12 = 48.6 milligrams.
How many sodas would it take to kill you?
To find this, we divide the lethal dose amount (10,000 mg) by the amount of caffeine per can (48.6 mg).
10,000 ÷ 48.6 = 205.76.
Since 205 cans is not quite 10,000 mg, technically it would take 206 cans of soda to consume a lethal dose of caffeine.
Answer:0.5 m/s
Explanation: Divide D: distance To L: line 3.5 divided by 1.75 gives you 0.5 m/s
distance/time